Surface roughness is used to quantitatively evaluate the surface topography of the workpiece subjected to mechanical processing. The optimal machining parameters are critical to getting designed surface roughness. The effects of cutting speed, feed rate, and depth of cut on the areal surface roughness of AZ31B Mg alloys were investigated via experiments combined with regression analysis. An orthogonal design was adopted to process the dry turning experiment of the front end face of the AZ31B bar. The areal surface roughness Sa and Sz of the end face were measured with an interferometer and analyzed through direct analysis and variance analysis (ANOVA). Then, an empirical model was established to predict the value of Sa through multiple regression analysis. Finally, a verification experiment was carried out to confirm the optimal combination of parameters for the minimum Sa and Sz, as well as the availability of the regression model for predicting Sa. The results show that both Sa and Sz of the machined end face reduce with the decrease in feed rate. The minimum of Sa and Sz reaches to 0.577 and 5.480 µm, respectively, with the cutting speed of 85 m/min, the feed rate of 0.05 mm/rev, and a depth of cut of 0.3 mm. The feed rate, depth of cut, and cutting speed contribute the greatest, the second and the smallest to Sa, respectively. The linear regression model can predict Sa of AZ31B machined with dry face turning, since the cutting speed, feed rate and depth of cut can explain 97.5% of the variation of Sa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287581 | PMC |
http://dx.doi.org/10.3390/ma13102303 | DOI Listing |
Acta Bioeng Biomech
September 2024
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
The aim of the study was to investigate the influence of the nitrocarburizing process carried out in low temperature plasma using the active screen at 440 °C on the structure and physicochemical properties of the 316LVM steel. In the paper, results of micro-structure and phase composition of the layers, roughness, and surface wettability, potentiodynamic pitting corrosion resistance, penetration of ions into the solution as well as biological tests were present. The studies were conducted for the samples of both mechanically polished and nitrocarburized surfaces, after sterilization, and exposure to the Ringer's solution.
View Article and Find Full Text PDFInt J Clin Pediatr Dent
December 2024
Department of Dental Materials, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Introduction: In children, polymethylmethacrylate (PMMA) is a commonly used material for fabrication of dental prostheses, such as obturators, removable space maintainers, habit-breaking appliances, removable orthodontic appliances, and removable partial and complete dentures. Regular cleaning of such prostheses is vital for maintaining the health of the oral tissues as well as the longevity of the prosthesis. The chemical method of disinfection, using different chemical cleansers, is commonly used for cleaning a dental prosthesis.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China.
The unique adhesion capabilities of soft-bodied creatures such as leeches and octopuses have provided considerable inspiration for the development of artificial adhesive materials. However, previous studies have either focused on the design of sucker structures or concentrated on the synthesis of adhesive materials, with the combination of these two aspects not yet having been deeply investigated. In this study, inspired from leech's unique adsorption ability, a biomimetic approach is proposed that combined artificial sucker and mucus, to achieve remarkable adhesion stability on rough surfaces using 5 cm diameter silicone suction cups.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:
The development of a direct compression excipient with extended-release property is crucial for improving tablet manufacturing and drug delivery. This research focuses on developing a novel co-processed excipient composed of rice starch (RS), methylcellulose (MC), and colloidal silicon dioxide (CSD) using a wet granulation technique. The ratios of RS: MC (1.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:
Polylactic acid (PLA) is a biodegradable alternative to traditional plastics due to its excellent biocompatibility. However, PLA is challenging to fully degrade and can easily become microplastics (MPs) in surface water, a process accompanied by aging. This study found that aged PLA (APLA) MPs exhibited increased surface roughness, decreased surface potential, and more oxygen-containing functional groups compared to PLA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!