Nutraceutical Activity in Osteoarthritis Biology: A Focus on the Nutrigenomic Role.

Cells

Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.

Published: May 2020

Osteoarthritis (OA) is a disease associated to age or conditions that precipitate aging of articular cartilage, a post-mitotic tissue that remains functional until the failure of major homeostatic mechanisms. OA severely impacts the national health system costs and patients' quality of life because of pain and disability. It is a whole-joint disease sustained by inflammatory and oxidative signaling pathways and marked epigenetic changes responsible for catabolism of the cartilage extracellular matrix. OA usually progresses until its severity requires joint arthroplasty. To delay this progression and to improve symptoms, a wide range of naturally derived compounds have been proposed and are summarized in this review. Preclinical in vitro and in vivo studies have provided proof of principle that many of these nutraceuticals are able to exert pleiotropic and synergistic effects and effectively counteract OA pathogenesis by exerting both anti-inflammatory and antioxidant activities and by tuning major OA-related signaling pathways. The latter are the basis for the nutrigenomic role played by some of these compounds, given the marked changes in the transcriptome, miRNome, and methylome. Ongoing and future clinical trials will hopefully confirm the disease-modifying ability of these bioactive molecules in OA patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291002PMC
http://dx.doi.org/10.3390/cells9051232DOI Listing

Publication Analysis

Top Keywords

nutrigenomic role
8
signaling pathways
8
nutraceutical activity
4
activity osteoarthritis
4
osteoarthritis biology
4
biology focus
4
focus nutrigenomic
4
role osteoarthritis
4
osteoarthritis disease
4
disease associated
4

Similar Publications

Alternative Splicing Landscape in Mouse Skeletal Muscle and Adipose Tissue: Effects of Intermittent Fasting and Exercise.

J Nutr Biochem

December 2024

Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany. Electronic address:

Alternative splicing contributes to diversify the cellular protein landscape, but aberrant splicing is implicated in many diseases. To which extent mis-splicing contributes to insulin resistance as the causal defect of type 2 diabetes and whether this can be reversed by lifestyle interventions is largely unknown. Therefore, RNA sequencing data from skeletal muscle and adipose tissue of diabetes-susceptible NZO mice treated with or without intermittent fasting and of healthy C57BL/6J mice subjected to exercise were analyzed for alternative splicing differences using Whippet and rMATS.

View Article and Find Full Text PDF

A bio-cultural tale of the past, present and future of human nutrition.

J Anthropol Sci

December 2024

Independent Researcher, Rome, Italy.

Human nutrition represents a dynamic interplay between biological evolution and cultural development, profoundly shaping dietary practices and health outcomes. This paper traces the dietary evolution of the genus Homo, from practices like foraging, scavenging, hunting, and gathering to the Neolithic transition towards agropastoral subsistence. These changes influenced human biology, evident in genetic adaptations such as lactase persistence and amylase gene copy variation, and reshaped societal structures and population dynamics.

View Article and Find Full Text PDF

The potential association of milk with childhood obesity has been widely debated and researched. Milk is known to contain many bioactive compounds as well as bovine exosomes rich in micro-RNA (miR) that can have effects on various cells, including stem cells. Among them, adipose stem cells (ASC) are particularly interesting due to their role in adipose tissue growth and, thus, obesity.

View Article and Find Full Text PDF

Autophagy and nutrigenomics: a winning team against chronic disease and tumors.

Front Nutr

December 2024

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.

Autophagy, a vital cell process, has garnered attention for its role in various diseases and potential therapeutic interventions. Dysregulation of autophagy contributes to conditions such as metabolic diseases, neurodegenerative disorders, and cancer. In diseases such as diabetes, autophagy plays a crucial role in islet β-cell maintenance and glucose homeostasis, offering potential targets for therapeutic intervention.

View Article and Find Full Text PDF

"OMICS" in Human Milk: Focus on Biological Effects on Bone Homeostasis.

Nutrients

November 2024

Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "A.Moro", 70124 Bari, Italy.

Human milk (HM) is a complex biofluid rich in nutrients and bioactive compounds essential for infant health. Recent advances in omics technologies-such as proteomics, metabolomics, and transcriptomics-have shed light on the influence of HM on bone development and health. This review discusses the impact of various HM components, including proteins, lipids, carbohydrates, and hormones, on bone metabolism and skeletal growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!