Changing demands have led to rapidly growing interest in the modification of waterborne wood coatings. To improve the performance of a polyacrylate wood coating, especially the strength, hardness, and abrasion resistance of the film, a soy protein isolate-grafted-acrylate (SGA) copolymer was prepared in an aqueous solution with ammonium persulfate (APS) as an initiator and sodium pyrosulfite (SPS) as an unfolding agent for the soybean protein isolate (SPI). The emulsion was characterized using transmission electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and a particle size analyzer. Furthermore, the mechanical properties of the film, including the tensile strength, elastic modulus, elongation at break, and pencil hardness, were measured. The results showed that the glass transition temperature of the polyacrylic resin decreased to 35 °C after the SPI grafting. The elastic modulus of the film increased from 0.317 to 46.949 MPa, and the elongation at break decreased from 453.133% to 187.125% as the addition of SPI varied from 0 to 4 g, respectively. The pencil hardness of the wood coating increased from HB to 3H. This paper proposes a feasible route for the utilization of SPI for wood coatings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285111 | PMC |
http://dx.doi.org/10.3390/polym12051137 | DOI Listing |
Wood Sci Technol
January 2025
TU Wien, Institute for Mechanics of Materials and Structures, Karlsplatz 13, Vienna, 1040 Austria.
Unlabelled: Accurate prediction of moisture distributions in wood is among the most critical challenges in timber engineering. Achieving this requires a well-coordinated comparison of experimental methods and simulation tools. While significant progress has been made in developing simulation tools in recent years, a lack of experience with and trust in these tools continues to hinder broader implementation, especially when it comes to free water and its absorption.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361000, People's Republic of China.
In recent decades, annual urban fire incidents, including those involving ancient wooden buildings burned, transportation, and solar panels, have increased, leading to significant loss of human life and property. Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge. Herein, we present a transparent, low thickness, ceramifiable nanosystem coating composed of a highly adhesive base (poly(SSS-co-HEMA)), nanoscale layered double hydroxide sheets as ceramic precursors, and supramolecular melamine di-borate as an accelerator.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, 16500 Prague, Czech Republic.
Electron microscopy (EM) is a key tool for studying the microstructure of wood; however, observing uncoated samples poses a challenge due to surface charging. This study aims to identify the critical voltage that allows for the effective observation of uncoated wood samples without significant loading. As part of the experiment, samples of different wood species were tested, including Acacia ( L.
View Article and Find Full Text PDFSmall
January 2025
Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, 44610, Republic of Korea.
The current lack of stable, scalable, and efficient coating technology dramatically limits the exploitation of solar-driven graphitic carbon nitride (CN) photocatalysts. Herein, a unique, efficient, and scalable method is reported to immobilize CN powder on various substrates ranging from Fluorine tin oxide (FTO), glass, Plexiglas, Al foil, Ti foil, and Granite stone, to even wood. The film shows an outstanding thickness of 212 µm, which is the highest value ever reported.
View Article and Find Full Text PDFNanoscale
January 2025
College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
In recent years, solar-driven photothermal water evaporation technology for seawater desalination and wastewater treatment has developed rapidly, which is of great significance for addressing the issue of freshwater scarcity. However, due to the high costs associated with the manufacturing, maintenance, and operation of such devices, their application remains challenging in remote and resource-scarce regions. Due to its excellent light absorption capability in the near-infrared region, high hydrophilicity, and stable chemical properties, coupled with the low cost of recycling waste carbonized polyphenylene sulfide, this material is an excellent choice as a photothermal material for solar-driven water evaporation devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!