Bacteriophages, natural killers of bacteria, and plant secondary metabolites, such as condensed tannins, are potential agents for the control of foodborne pathogens. The first objective of this study evaluated the efficacy of a bacteriophage SA21RB in reducing pre-formed biofilms on stainless-steel produced by two Shiga toxin-producing (STEC) strains, one from South Africa and the other from Canada. The second objective examined the anti-bacterial and anti-biofilm activity of condensed tannin (CT) from purple prairie clover and phlorotannins (PT) from brown seaweed against these strains. For 24-h-old biofilms, (O113:H21; 6.2 log colony-forming units per square centimeter (CFU/cm) and O154:H10; 5.4 log CFU/cm), 3 h of exposure to phage (10 plaque-forming units per milliliter (PFU/mL)) reduced ( ≤ 0.05) the number of viable cells attached to stainless-steel coupons by 2.5 and 2.1 log CFU/cm for O113:H21 and O154:H10, respectively. However, as biofilms matured, the ability of phage to control biofilm formation declined. In biofilms formed for 72 h (O113:H21; 5.4 log CFU/cm and O154:H10; 7 log CFU/cm), reductions after the same duration of phage treatment were only 0.9 and 1.3 log CFU/cm for O113:H21 and O154:H10, respectively. Initial screening of CT and PT for anti-bacterial activity by a microplate assay indicated that both STEC strains were less sensitive ( ≤ 0.05) to CT than PT over a concentration range of 25-400 µg/mL. Based on the lower activity of CT (25-400 µg/mL), they were not further examined. Accordingly, PT (50 µg/mL) inhibited ( ≤ 0.05) biofilm formation for up to 24 h of incubation at 22 °C, but this inhibition progressively declined over 72 h for both O154:H10 and O113:H21. Scanning electron microscopy revealed that both SA21RB and PT eliminated 24 h biofilms, but that both strains were able to adhere and form biofilms on stainless-steel coupons at longer incubation times. These findings revealed that phage SA21RB is more effective at disrupting 24 than 72 h biofilms and that PT were able to inhibit biofilm formation of both O154:H10 and O113:H21 for up to 24 h.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277190 | PMC |
http://dx.doi.org/10.3390/antibiotics9050257 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!