Much of the seafood that humans consume comes from estuaries and coastal areas where microplastics (MPs) accumulate, due in part to continual input and degradation of plastic litter from rivers and runoff. As filter feeders, oysters () are especially vulnerable to MP pollution. In this study, we assessed MP pollution in water at oyster reefs along the Mississippi Gulf Coast when: (1) historic flooding of the Mississippi River caused the Bonnet Carré Spillway to remain open for a record period of time causing major freshwater intrusion to the area and deleterious impacts on the species and (2) the spillway was closed, and normal salinity conditions resumed. Microplastics (~25 µm-5 mm) were isolated using a single-pot method, preparing samples in the same vessel (Mason jars) used for their collection right up until the MPs were transferred onto filters for analyses. The MPs were quantified using Nile Red fluorescence detection and identified using laser direct infrared (LDIR) analysis. Concentrations ranged from ~12 to 381 particles/L and tended to decrease at sites impacted by major freshwater intrusion. With the spillway open, average MP concentrations were positively correlated with salinity ( = 0.87, = 0.05) for sites with three or more samples examined. However, the dilution effect on MP abundances was temporary, and oyster yields suffered from the extended periods of lower salinity. There were no significant changes in the relative distribution of MPs during freshwater intrusions; most of the MPs (>50%) were in the lower size fraction (~25-90 µm) and consisted mostly of fragments (~84%), followed by fibers (~11%) and beads (~5%). The most prevalent plastic was polyester, followed by acrylates/polyurethanes, polyamide, polypropylene, polyethylene, and polyacetal. Overall, this work provides much-needed empirical data on the abundances, morphologies, and types of MPs that oysters are exposed to in the Mississippi Sound, although how much of these MPs are ingested and their impacts on the organisms deserves further scrutiny. This paper is believed to be the first major application of LDIR to the analysis of MPs in natural waters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355549 | PMC |
http://dx.doi.org/10.3390/toxics8020035 | DOI Listing |
Conserv Biol
December 2024
California Division, The Nature Conservancy, California, USA.
Ecosystems globally have reached critical tipping points because of climate change, urbanization, unsustainable resource consumption, and pollution. In response, international agreements have set targets for conserving 30% of global ecosystems and restoring 30% of degraded lands and waters by 2030 (30×30). In 2021, the United States set a target to jointly conserve and restore 30% of US lands and waters by 2030, with a specific goal to restore coastal ecosystems, namely wetlands, seagrasses, coral and oyster reefs, and mangrove and kelp forests, to increase resilience to climate change.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Marine Sciences, National Research Council (CNR-ISMAR), Bologna, Italy.
Anthropogenic and climate factors are increasingly affecting the composition and functions of many marine biogenic reefs globally, leading to a decline in associated biodiversity and ecosystem services. Once dominant ecological component, modern oyster reefs in the Mediterranean and Black Sea and the Atlantic Ocean have already been profoundly altered by overharvesting, habitat loss and the introduction of alien species. Far less known are deep-water oyster reefs, which can however form substantial biogenic structures below 30 m depth.
View Article and Find Full Text PDFSci Data
November 2024
School of GeoSciences, University of Edinburgh, Edinburgh, Scotland, UK.
Mar Pollut Bull
October 2023
School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia; Sydney Institute of Marine Science, Mosman, NSW 2088, Australia.
To investigate nitrogen (N) cycling in oyster reef habitats along the East coast of Australia, we assessed N-cycling gene abundances in oyster shell biofilms and surrounding sediments, and explored their correlation with environmental factors and respective N rates. We found higher abundances of the denitrification gene nosZII in oyster shell biofilms, while there were not significant differences in the denitrification genes nirS and nirK between oyster biofilms and sediments. Additionally, oyster shell biofilms had a lower (nirS + nirK)/nosZII ratio, indicating a greater capacity for N removal and limited nitrous oxide release compared to sediments.
View Article and Find Full Text PDFMar Environ Res
November 2024
The Nature Conservancy, Carlton, Victoria, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!