Much of the seafood that humans consume comes from estuaries and coastal areas where microplastics (MPs) accumulate, due in part to continual input and degradation of plastic litter from rivers and runoff. As filter feeders, oysters () are especially vulnerable to MP pollution. In this study, we assessed MP pollution in water at oyster reefs along the Mississippi Gulf Coast when: (1) historic flooding of the Mississippi River caused the Bonnet Carré Spillway to remain open for a record period of time causing major freshwater intrusion to the area and deleterious impacts on the species and (2) the spillway was closed, and normal salinity conditions resumed. Microplastics (~25 µm-5 mm) were isolated using a single-pot method, preparing samples in the same vessel (Mason jars) used for their collection right up until the MPs were transferred onto filters for analyses. The MPs were quantified using Nile Red fluorescence detection and identified using laser direct infrared (LDIR) analysis. Concentrations ranged from ~12 to 381 particles/L and tended to decrease at sites impacted by major freshwater intrusion. With the spillway open, average MP concentrations were positively correlated with salinity ( = 0.87, = 0.05) for sites with three or more samples examined. However, the dilution effect on MP abundances was temporary, and oyster yields suffered from the extended periods of lower salinity. There were no significant changes in the relative distribution of MPs during freshwater intrusions; most of the MPs (>50%) were in the lower size fraction (~25-90 µm) and consisted mostly of fragments (~84%), followed by fibers (~11%) and beads (~5%). The most prevalent plastic was polyester, followed by acrylates/polyurethanes, polyamide, polypropylene, polyethylene, and polyacetal. Overall, this work provides much-needed empirical data on the abundances, morphologies, and types of MPs that oysters are exposed to in the Mississippi Sound, although how much of these MPs are ingested and their impacts on the organisms deserves further scrutiny. This paper is believed to be the first major application of LDIR to the analysis of MPs in natural waters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355549PMC
http://dx.doi.org/10.3390/toxics8020035DOI Listing

Publication Analysis

Top Keywords

oyster reefs
8
mississippi sound
8
mps
8
major freshwater
8
freshwater intrusion
8
ldir analysis
8
occurrence microplastic
4
microplastic pollution
4
pollution oyster
4
reefs coastal
4

Similar Publications

Ecosystems globally have reached critical tipping points because of climate change, urbanization, unsustainable resource consumption, and pollution. In response, international agreements have set targets for conserving 30% of global ecosystems and restoring 30% of degraded lands and waters by 2030 (30×30). In 2021, the United States set a target to jointly conserve and restore 30% of US lands and waters by 2030, with a specific goal to restore coastal ecosystems, namely wetlands, seagrasses, coral and oyster reefs, and mangrove and kelp forests, to increase resilience to climate change.

View Article and Find Full Text PDF

Anthropogenic and climate factors are increasingly affecting the composition and functions of many marine biogenic reefs globally, leading to a decline in associated biodiversity and ecosystem services. Once dominant ecological component, modern oyster reefs in the Mediterranean and Black Sea and the Atlantic Ocean have already been profoundly altered by overharvesting, habitat loss and the introduction of alien species. Far less known are deep-water oyster reefs, which can however form substantial biogenic structures below 30 m depth.

View Article and Find Full Text PDF
Article Synopsis
  • The European flat oyster, a vital part of marine ecosystems and a key economic resource, has seen its habitats drastically decline, leading to functional extinction.
  • Recent studies compiled data from 1524 to 2022 to reveal past locations and extents of flat oyster fisheries and reefs, highlighting where these ecosystems once thrived.
  • These datasets aim to support flat oyster restoration efforts and improve adaptive management strategies while helping recover overlooked histories of ocean ecosystem changes caused by human activities.
View Article and Find Full Text PDF

To investigate nitrogen (N) cycling in oyster reef habitats along the East coast of Australia, we assessed N-cycling gene abundances in oyster shell biofilms and surrounding sediments, and explored their correlation with environmental factors and respective N rates. We found higher abundances of the denitrification gene nosZII in oyster shell biofilms, while there were not significant differences in the denitrification genes nirS and nirK between oyster biofilms and sediments. Additionally, oyster shell biofilms had a lower (nirS + nirK)/nosZII ratio, indicating a greater capacity for N removal and limited nitrous oxide release compared to sediments.

View Article and Find Full Text PDF
Article Synopsis
  • Oyster reefs are vital but endangered habitats that support ecosystem services and biodiversity, particularly for the flat oyster (Ostrea angasi) in Australia.
  • Research in southeast Tasmania focused on relationships between community respiration, nitrogen fluxes, filtration rates, and oyster and sediment characteristics across three sites, finding significant positive correlations with live oyster biomass.
  • The study indicated that Ralphs Bay, with the most intact reef, had higher community respiration and biodiversity, while sediment's organic and silt content had minimal effects, emphasizing the importance of oyster biomass for improving water quality and ecosystem health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!