Centromeres are essential for proper chromosome segregation to the daughter cells during mitosis and meiosis. Chromosomes of most eukaryotes studied so far have regional centromeres that form primary constrictions on metaphase chromosomes. These monocentric chromosomes vary from point centromeres to so-called "meta-polycentromeres", with multiple centromere domains in an extended primary constriction, as identified in and species. However, in various animal and plant lineages centromeres are distributed along almost the entire chromosome length. Therefore, they are called holocentromeres. In holocentric plants, centromere-specific proteins, at which spindle fibers usually attach, are arranged contiguously (line-like), in clusters along the chromosomes or in bands. Here, we summarize findings of ultrastructural investigations using immunolabeling with centromere-specific antibodies and super-resolution microscopy to demonstrate the structural diversity of plant centromeres. A classification of the different centromere types has been suggested based on the distribution of spindle attachment sites. Based on these findings we discuss the possible evolution and advantages of holocentricity, and potential strategies to segregate holocentric chromosomes correctly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278974 | PMC |
http://dx.doi.org/10.3390/ijms21103488 | DOI Listing |
Cell
January 2025
Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:
Upon infection, human immunodeficiency virus type 1 (HIV-1) releases its cone-shaped capsid into the cytoplasm of infected T cells and macrophages. The capsid enters the nuclear pore complex (NPC), driven by interactions with numerous phenylalanine-glycine (FG)-repeat nucleoporins (FG-Nups). Whether NPCs structurally adapt to capsid passage and whether capsids are modified during passage remains unknown, however.
View Article and Find Full Text PDFNat Commun
January 2025
NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.
View Article and Find Full Text PDFSLAS Discov
January 2025
Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4ZF. Electronic address:
At the turn of the century a fundamental resolution barrier in fluorescence microscopy known as the diffraction limit was broken, giving rise to the field of super-resolution microscopy. Subsequent nanoscopic investigation with visible light revolutionised our understanding of how previously unknown molecular features give rise to the emergent behaviour of cells. It transpires that the devil is in these fine molecular details, and essential nanoscale processes were found everywhere researchers chose to look.
View Article and Find Full Text PDFAdv Mater
January 2025
Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund Platz 1, 37077, Göttingen, Germany.
In the burgeoning field of super-resolution fluorescence microscopy, significant efforts are being dedicated to expanding its applications into the 3D domain. Various methodologies have been developed that enable isotropic resolution at the nanometer scale, facilitating the visualization of 3D subcellular structures with unprecedented clarity. Central to this progress is the need for reliable 3D structures that are biologically compatible for validating resolution capabilities.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Blue Growth Research Lab, Ghent University, Ostend Science Park, Ostend, Belgium.
In contrast to microplastics, studying the interactions of nanoplastics (NPs) with primary producers such as marine microalgae remains challenging. This is attributed to the lack of adequate visualization methods that can distinguish NPs from autofluorescent biological material such as marine algae. The aim of this study was to develop a method for labeling and visualizing nonfluorescent micro- and nanoplastics (MNPs) of various polymer types, shapes, and sizes, in interaction with marine primary producers, which are autofluorescent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!