Basal stomatal aperture is regulated by GA-DELLAs in Arabidopsis.

J Plant Physiol

Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK. Electronic address:

Published: July 2020

Stomatal aperture is tightly regulated in order to achieve the best compromise between gas exchange and water conservation. Steady-state (basal) stomatal aperture is therefore understandably a key component in plant fitness. It has been shown previously in tomato that DELLA proteins act as positive regulators of closure of stomata, and their action is enhanced by the hormone ABA, which is itself important in mediating drought stress tolerance. DELLAs are regulated by a variety of signals which promote plant growth, most notably the hormones gibberellins, which have been shown to promote stomatal opening. We have found that DELLA proteins are also used in Arabidopsis for regulating basal stomatal aperture. We also discovered that the perception of endogenous gibberellins via the GID1 receptors is necessary for optimal basal stomatal aperture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2020.153182DOI Listing

Publication Analysis

Top Keywords

stomatal aperture
20
basal stomatal
16
della proteins
8
aperture
5
stomatal
5
basal
4
aperture regulated
4
regulated ga-dellas
4
ga-dellas arabidopsis
4
arabidopsis stomatal
4

Similar Publications

Enhancing Soybean Salt Tolerance with GSNO and Silicon: A Comprehensive Physiological, Biochemical, and Genetic Study.

Int J Mol Sci

January 2025

Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.

Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean ().

View Article and Find Full Text PDF

Comprehensive Identification of Gene Family in Oliv. and Functional Analysis of in Drought Tolerance.

Int J Mol Sci

January 2025

Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China.

The transcription factors in the ABA Response Element Binding (AREB) protein family were differentially regulated under multiple stress conditions; however, functional analyses of AREB in Oliv. had not been conducted previously. In the present study, the comprehensive identification of the gene family and the function of in response to drought stress in were elucidated.

View Article and Find Full Text PDF

Phosphorylation of Arabidopsis NRT1.1 regulates plant stomatal aperture and drought resistance in low nitrate condition.

BMC Plant Biol

January 2025

MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).

View Article and Find Full Text PDF

A key feature of stress responses [closely relative to the phytohormone abscisic acid (ABA)] and associated acclimation in plants is the dynamic adjustments and related optimisation of carbohydrate content between sink and source organs. The production of stomata, which consist of a pore between two adjacent guard cells, are central to plant adaptation to changing environment conditions. In this context, ABA is a core modulator of environmentally determined stomatal development.

View Article and Find Full Text PDF

Low phosphate (LP) availability significantly impacts crop yield and quality. PHOSPHATE STARVATION RESPONSE1 (PHR1) along with PHR1-like 1 (PHL1) act as a key transcriptional regulator in a plant's adaptive response to LP conditions. Abscisic acid (ABA) plays an important role in how plants respond to environmental stresses like salinity and drought.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!