Deep learning for dermatologists: Part II. Current applications.

J Am Acad Dermatol

Mayo Clinic Office of Artificial Intelligence in Dermatology, Rochester, Minnesota; Department of Health Sciences Research, Division of Digital Health Sciences, Mayo Clinic, Rochester, Minnesota.

Published: December 2022

Because of a convergence of the availability of large data sets, graphics-specific computer hardware, and important theoretical advancements, artificial intelligence has recently contributed to dramatic progress in medicine. One type of artificial intelligence known as deep learning has been particularly impactful for medical image analysis. Deep learning applications have shown promising results in dermatology and other specialties, including radiology, cardiology, and ophthalmology. The modern clinician will benefit from an understanding of the basic features of deep learning to effectively use new applications and to better gauge their utility and limitations. In this second article of a 2-part series, we review the existing and emerging clinical applications of deep learning in dermatology and discuss future opportunities and limitations. Part 1 of this series offered an introduction to the basic concepts of deep learning to facilitate effective communication between clinicians and technical experts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7669658PMC
http://dx.doi.org/10.1016/j.jaad.2020.05.053DOI Listing

Publication Analysis

Top Keywords

deep learning
24
artificial intelligence
8
deep
6
learning
5
learning dermatologists
4
dermatologists current
4
applications
4
current applications
4
applications convergence
4
convergence availability
4

Similar Publications

Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.

View Article and Find Full Text PDF

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).

View Article and Find Full Text PDF

This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!