A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Localizing syntactic predictions using recurrent neural network grammars. | LitMetric

Brain activity in numerous perisylvian brain regions is modulated by the expectedness of linguistic stimuli. We leverage recent advances in computational parsing models to test what representations guide the processes reflected by this activity. Recurrent Neural Network Grammars (RNNGs) are generative models of (tree, string) pairs that use neural networks to drive derivational choices. Parsing with them yields a variety of incremental complexity metrics that we evaluate against a publicly available fMRI data-set recorded while participants simply listen to an audiobook story. Surprisal, which captures a word's un-expectedness, correlates with a wide range of temporal and frontal regions when it is calculated based on word-sequence information using a top-performing LSTM neural network language model. The explicit encoding of hierarchy afforded by the RNNG additionally captures activity in left posterior temporal areas. A separate metric tracking the number of derivational steps taken between words correlates with activity in the left temporal lobe and inferior frontal gyrus. This pattern of results narrows down the kinds of linguistic representations at play during predictive processing across the brain's language network.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropsychologia.2020.107479DOI Listing

Publication Analysis

Top Keywords

neural network
12
recurrent neural
8
network grammars
8
activity left
8
localizing syntactic
4
syntactic predictions
4
predictions recurrent
4
neural
4
network
4
grammars brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!