Human cytomegalovirus (HCMV) is a ubiquitous human pathogen of high clinical relevance. Despite intensive research of virus-host interaction, crucial details still remain unknown. In this study, the role of the cellular peptidyl-prolyl cis/trans isomerase Pin1 during HCMV infection was investigated. Pin1 is able to recognize phosphorylated serine/threonine-proline motifs and regulates the structural conformation, stability and function of its substrates. Concerning HCMV replication, our recent studies revealed that Pin1 plays an important role in viral nuclear egress by contributing to the depletion of the nuclear lamina at distinct sites through the cis/trans conversion of lamin proteins. Here, novel data illustrate the HCMV-induced upregulation of Pin1 including various cell types being permissive, semi-permissive or non-permissive for productive HCMV replication. Addressing the question of functional impact, Pin1 knock-out (KO) did not show a measurable effect on viral protein expression, at least when assessed by Western blot analysis. Applying highly sensitive methods of qPCR and plaque titration, a pharmacological inhibition of Pin1 activity, however, led to a significant decrease of viral genome equivalents and production of infectious virus, respectively. When focusing on the identification of viral proteins interacting with Pin1 by various coimmunoprecipitation (CoIP) settings, we obtained positive signals for (i) the core nuclear egress complex protein pUL50, (ii) the viral mRNA export factor pUL69 and (iii) the viral DNA polymerase processivity factor pUL44. Confocal immunofluorescence analysis focusing on partial colocalization between Pin1 and the coexpressed viral proteins pUL50, pUL69 or pUL44, respectively, was consistent with the CoIP experiments. Mapping experiments, using transient expression constructs for a series of truncated protein versions and specific replacement mutants, revealed a complex pattern of Pin1 interaction with these three early regulatory HCMV proteins. Data suggest a combination of different modes of Pin1 interactions, involving both classical phosphorylation-dependent Pin1 binding motifs and additional phosphorylation-independent binding sites. Combined, these results support the concept that Pin1 may play an important role in several stages of HCMV infection, thus determining viral replicative efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2020.198023 | DOI Listing |
ACS Med Chem Lett
January 2025
Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) is a unique peptidyl-prolyl isomerase (PPIase), and inactivation of Pin1 with a covalent inhibitor is a potential strategy for developing anticancer agents. Herein, a series of sulfolane amino-substituted 2-chloro-5-nitropyrimidine derivatives were disclosed as structurally distinct covalent inhibitors toward Pin1, which were validated for their covalent binding to Cys113 of Pin1 by X-ray cocrystal structures of compounds (IC = 11.55 μM) and (IC = 3.
View Article and Find Full Text PDFCancer Discov
January 2025
Salk Institute for Biological Studies, La Jolla, CA, United States.
Identities of functional pSer/Thr.Pro protein substrates of the PIN1 prolyl isomerase and its effects on downstream signaling in bladder carcinogenesis remain largely unknown. Phenotypically, we found that PIN1 positively regulated bladder cancer cell proliferation, cell motility and urothelium clearance capacity in vitro and controlled tumor growth and potential metastasis in vivo.
View Article and Find Full Text PDFJ Cancer Prev
December 2024
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea.
Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs.
View Article and Find Full Text PDFTransgenic Res
January 2025
Shaanxi Tobacco Company Baoji City Company, Baoji, 721000, Shaanxi, China.
The involvement of Loose Plant Architecture 1 (LPA1) in regulating plant growth and leaf angle has been previously demonstrated. However, the fundamental genetic background remains unidentified. To further understand the tissue expression profile of the NtLPA1 gene, an overexpression vector (pBI121-NtLPA1) was developed and employed to modify tobacco using the leaf disc method genetically.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Gynecology, Dalian Women and Children's Medical Center (Group), Dalian Medical University, Dalian 116033, Liaoning, China. Electronic address:
Background: Cervical cancer is a prevalent form of cancer in women, and the inhibition of ferroptosis has been shown to promote the progression of cervical cancer tumours. This study aimed to investigate the role of PIN1 in regulating ferroptosis in cervical cancer, focusing on its ability to modulate the cGAS-STING pathway and the potential involvement of USP34 as an upstream regulator of PIN1.
Methods: PIN1-overexpressing and PIN1-knockdown cell lines were constructed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!