Proton-Coupled Electron Transport in Two Distinct CYBASC Paralogs of : A Comparative Characterization of Highly Conserved Tyrosine and Lysine Residues.

Biochemistry

Saarland University, Department of Structural Biology, Institute of Biophysics, Center of Human and Molecular Biology (ZHMB), Faculty of Medicine, Building 60, D-66421 Homburg, Germany.

Published: June 2020

CYBASC proteins are ascorbate (AscH) reducible, diheme -containing integral membrane cytochrome proteins (cyt), which are proposed to be involved in AscH recycling and facilitation of iron absorption. Two distinct CYBASC paralogs from the plant , cyt-A (A-paralog) and cyt-B (B-paralog), have been found to differ in their visible-spectral characteristics and their interaction with AscH and ferric iron chelates. A previously determined crystal structure of the B-paralog provides the first insights into the structural organization of a CYBASC member and implies hydrogen bonding between the substrate AscH and the conserved lysine residues at positions 77 (B-K77) and 81 (B-K81). The function of the highly conserved tyrosine at position 70 (B-Y70) is not obvious in the crystal structure, but its localization indicates the possible involvement in proton-coupled electron transfer. Here we show that B-Y70 plays a major role in the modulation of the oxidation-reduction midpoint potential of the high-potential heme, (), as well as in AscH oxidation. Our results support the involvement of the functionally conserved B-K77 in the stabilization of the dianion Asc. These findings are supported by the crystal structure of the B-paralog, but a comparative biochemical and biophysical characterization of the A- and B-paralogs implied distinct and more complex functions of the corresponding residues A-Y69 and A-K76 in the A-paralog. Our results emphasize the need for a high-resolution crystal structure of the A-paralog to illuminate the differences in functional organization between the two paralogs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.0c00155DOI Listing

Publication Analysis

Top Keywords

crystal structure
16
proton-coupled electron
8
distinct cybasc
8
cybasc paralogs
8
highly conserved
8
conserved tyrosine
8
lysine residues
8
structure b-paralog
8
asch
5
electron transport
4

Similar Publications

Symmetry-breaking spin-state transitions in two of three isostructural salts of MnIII spin-crossover cations, [MnIII(3-OMe-5-NO2-sal2323)]+, with heavy anions are reported. The ReO4-  salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry-breaking structural phase transition between a high temperature phase (S = 2, C2/c), an intermediate ordered phase (S = 1/S = 2, P21/c), and a low temperature phase (S = 1, C2/c). The AsF6-  complex undergoes an abrupt transition between a high temperature phase (S = 2, C2/c) and a low temperature ordered phase (S = 1/S = 2, P-1).

View Article and Find Full Text PDF

Background: Cervical cancer disparities persist among minoritized women due to infrequent screening and poor follow-up. Structural and psychosocial barriers to following up with colposcopy are problematic for minoritized women. Evidence-based interventions using patient navigation and tailored telephone counseling, including the Tailored Communication for Cervical Cancer Risk (TC3), have modestly improved colposcopy attendance.

View Article and Find Full Text PDF

The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.

View Article and Find Full Text PDF

Co-pyrolysis reactions of BBr with SBr at 350 °C yielded the brominated thiaboranes -SBBr (1), -1-SBBr (2) and -SBBr (3), confirmed by high-resolution mass spectrometry, experimental and computational B NMR spectroscopy. The strong Br(σ-hole)⋯Br(ring) attraction has been the decisive energy contribution in the crystal of 1.

View Article and Find Full Text PDF

Phase separation plays a crucial role in many natural and industrial processes, such as the formation of clouds and minerals and the distillation of crude oil. In metals and alloys, phase separation is an important approach often utilized to improve their mechanical strength for use in construction, automobile, and aerospace manufacturing. Despite its importance in many processes, the atomic details of phase separation are largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!