Generalized sequential state discrimination for multiparty QKD and its optical implementation.

Sci Rep

Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do, 425-791, South Korea.

Published: May 2020

Sequential state discrimination is a strategy for N separated receivers. As sequential state discrimination can be applied to multiparty quantum key distribution (QKD), it has become one of the relevant research fields in quantum information theory. Up to now, the analysis of sequential state discrimination has been confined to special cases. In this report, we consider a generalization of sequential state discrimination. Here, we do not limit the prior probabilities and the number of quantum states and receivers. We show that the generalized sequential state discrimination can be expressed as an optimization problem. Moreover, we investigate a structure of generalized sequential state discrimination for two quantum states and apply it to multiparty QKD. We demonstrate that when the number of receivers is not too many, generalized sequential state discrimination for two pure states can be suitable for multiparty QKD. In addition, we show that generalized sequential state discrimination for two mixed states can be performed with high optimal success probability. This optimal success probability is even higher than those of quantum reproducing and quantum broadcasting strategy. Thus, generalized sequential state discrimination of mixed states is adequate for performing multiparty QKD. Furthermore, we prove that generalized sequential state discrimination can be implemented experimentally by using linear optics. Finally, we analyze the security of multiparty QKD provided by optimal sequential state discrimination. Our analysis shows that the multiparty QKD guarantees nonzero secret key rate even in low channel efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237475PMC
http://dx.doi.org/10.1038/s41598-020-63719-9DOI Listing

Publication Analysis

Top Keywords

sequential state
48
state discrimination
48
generalized sequential
28
multiparty qkd
24
state
12
discrimination
12
sequential
11
quantum states
8
receivers generalized
8
discrimination mixed
8

Similar Publications

The intramolecular migration of three hydrogen atoms from one moiety of a gaseous radical cation to the other prior to fragmentation is an extremely rare type of redox reaction. Within the scope of this investigation, this scenario requires an ionized but electron-rich arene acceptor bearing a para-(3-hydroxyalkyl) residue. The precise mechanism of such unidirectional 3H transfer processes, including the order of the individual H transfer steps, has remained unclear in spite of previous isotope labelling and recent infrared ion spectroscopy (IRIS) studies.

View Article and Find Full Text PDF

Avoiding severe structural distortion, irreversible phase transition, and realizing the stabilized multielectron redox are vital for promoting the development of high-performance NASICON-type cathode materials for sodium-ion batteries (SIBs). Herein, a high-entropy NaVFeTiMnCr(PO) (HE-NaTMP) cathode material is prepared by ultrafast high-temperature shock, which inhibits the possibility of phase separation and achieves reversible and stable multielectron transfer of 2.4/2.

View Article and Find Full Text PDF

A two-dimensional fluorescence and chemiluminescence orthogonal probe for discriminating and quantifying similar proteins.

Chem Sci

January 2025

Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, Center of Photosensitive Chemicals Engineering, East China University of Science and Technology Shanghai 200237 China

Given that proteins with minor variations in amino acid sequences cause distinct functional outcomes, identifying and quantifying similar proteins is crucial, but remains a long-standing challenge. Herein, we present a two-dimensional orthogonal fluorescence and chemiluminescence design strategy for the probe DCM-SA, which is sequentially activated by albumin-mediated hydrolysis, exhibiting light-up fluorescence and photo-induced cycloaddition generating chemiluminescence, enabling orthogonal signal amplification for discrimination of subtle differences between similar proteins. By orthogonalizing these dual-mode signals, a two-dimensional work curve of fluorescence and chemiluminescence is established to distinguish and quantify similar proteins HSA and BSA.

View Article and Find Full Text PDF

Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing -butylamine as a cost-effective bifunctional additive, acting as the base and ligand.

View Article and Find Full Text PDF

Monoterpene -pinene exhibits significant potential as an alternative fuel, widely recognized for its affordability and eco-friendly nature. It demonstrates multiple biological activities and has a wide range of applications. However, the limited supply of pinene extracted from plants poses a challenge in meeting the needs of the aviation industry and other sectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!