A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tailorable Indirect to Direct Band-Gap Double Perovskites with Bright White-Light Emission: Decoding Chemical Structure Using Solid-State NMR. | LitMetric

Efficient white-light-emitting single-material sources are ideal for sustainable lighting applications. Though layered hybrid lead-halide perovskite materials have demonstrated attractive broad-band white-light emission properties, they pose a serious long-term environmental and health risk as they contain lead (Pb) and are readily soluble in water. Recently, lead-free halide double perovskite (HDP) materials with a generic formula A(I)B'(III)B″(I)X (where A and B are cations and X is a halide ion) have demonstrated white-light emission with improved photoluminescence quantum yields (PLQYs). Here, we present a series of Bi/In mixed-cationic CsBiInAgCl HDP solid solutions that span the indirect to direct band-gap modification which exhibit tailorable optical properties. Density functional theory (DFT) calculations indicate an indirect-direct band-gap crossover composition when > 0.50. These HDP materials emit over the entire visible light spectrum, centered at 600 ± 30 nm with full-width at half maxima of ca. 200 nm upon ultraviolet light excitation and a maximum PLQY of 34 ± 4% for CsBiInAgCl. Short-range structural insight for these materials is crucial to unravel the unique atomic-level structural properties which are difficult to distinguish by diffraction-based techniques. Hence, we demonstrate the advantage of using solid-state nuclear magnetic resonance (NMR) spectroscopy to deconvolute the local structural environments of these mixed-cationic HDPs. Using ultrahigh-field (21.14 T) NMR spectroscopy of quadrupolar nuclei (In, Cs, and Bi), we show that there is a high degree of atomic-level B'(III)/B″(I) site ordering (i.e., no evidence of antisite defects). Furthermore, a combination of XRD, NMR, and DFT calculations was used to unravel the complete atomic-level random Bi/In cationic mixing in CsBiInAgCl HDPs. Briefly, this work provides an advance in understanding the photophysical properties that correlate long- to short-range structural elucidation of these newly developed solid-state white-light emitting HDP materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c02198DOI Listing

Publication Analysis

Top Keywords

white-light emission
12
hdp materials
12
indirect direct
8
direct band-gap
8
dft calculations
8
short-range structural
8
nmr spectroscopy
8
materials
5
tailorable indirect
4
band-gap double
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!