S-Nitrosothiols (RSNOs) are derived from the combination of sulfur and nitric oxide (NO) radicals in the Earth's atmosphere and fragment to products following photolysis. Extensive theoretical studies have focused on the thermodynamic and, to a lesser extent, photochemical properties of RSNOs. However, experimental studies of these compounds have been limited due to the inherent instability of RSNOs at room temperature. Using velocity map imaging (VMI), we explore the photodissociation dynamics of jet-cooled S-nitrosothiophenol (PhSNO) from 355 nm photolysis. We report the translational and internal energy distributions of the NO and thiophenoxy (PhS) co-fragments, which are determined by spatial detection of the ionized NO photofragments using 1+1 resonance-enhanced multiphoton ionization (REMPI). The velocity distributions indicate competing PhSNO nonadiabatic dissociation pathways, in which PhS is formed in the ground and first excited electronic states when probing high- and low-energy NO (XΠ, v'', J'') rovibrational states, respectively. The results of multireference electronic structure calculations suggest that direct dissociation on the bright S state results in PhS formed in its excited electronic state, whereas intersystem crossing into the triplet manifold leads to population of PhS in its electronic ground state. The dynamical signatures from the dissociation processes are imprinted on the fragments' quantum states and relative translation, which we explore in rigorous detail using state-resolved imaging and high-level theoretical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp00941e | DOI Listing |
Sci Rep
December 2024
Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
Long-term control of viral replication relies on the efficient differentiation of memory T cells into effector T cells during secondary immune responses. Recent findings have identified T cell precursors for both memory and exhausted T cells, suggesting the existence of progenitor-like effector T cells. These cells can persist without antigenic challenge but expand and acquire effector functions upon recall immune responses.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
Outer membrane (OM) lipoproteins serve vital roles in Gram-negative bacteria, contributing to their pathogenicity and drug resistance. For these lipoproteins to function, they must be transported from the inner membrane (IM), where they are assembled, to the OM by the ABC transporter LolCDE. We have previously captured structural snapshots of LolCDE in multiple states, revealing its dynamic conformational changes.
View Article and Find Full Text PDFSoc Cogn Affect Neurosci
December 2024
Cognitive Neuroscience Center (CNC), University of San Andres, Buenos Aires, C1011ACC, Argentina.
Human vocabularies include specific words to communicate interpersonal behaviors, a core linguistic function mainly afforded by social verbs (SVs). This skill has been proposed to engage dedicated systems subserving social knowledge. Yet, neurocognitive evidence is scarce, and no study has examined spectro-temporal and spatial signatures of SV access.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.
The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
YAP is a central regulator of the Hippo-YAP signaling axis, an evolutionarily conserved pathway that modulates organ growth and regeneration. Dysregulation of YAP signaling leads to uncontrolled proliferation, promoting epithelial-to-mesenchymal transition and invasion in cancer metastasis. Exogenous manipulation of YAP activity at the second-to-minute timescale is an important step in studying the signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!