Hybrid bionanocomposite coating systems (HBCSs) are green polymer materials consisting of an interface between a coating matrix and nanoparticles. The coating matrix was prepared by using a nonisocyanate poly(hydroxyl urethane) (NIPHU) prepolymer crosslinked via 1,3-diaminopropane and epoxidized oil. TEMPO-oxidized cellulose nanoparticles (TARC) were prepared from microcrystalline cellulose, and (3-aminopropyl)trimethoxysilane (APTMS)-coated ZnO nanoparticles (APTMS-ZnO) and their suspensions were synthesized separately. The suspensions at different weight ratios were incorporated into the coating matrix to prepare a series of HBCSs. FT-IR, H-NMR, C-NMR, XRD, SEM, and TEM were used to confirm the chemical structures, morphology, and elements of the coating matrix, nanomaterials, and HBCSs. The thermomechanical properties of the HBCSs were investigated by TGA-DTG and pencil hardness analyses. The UV and IR absorption spectra of the HBCSs were obtained using UV-vis spectroscopy and FTIR spectroscopy, respectively. The HBCSs exhibited good thermal stability at about 200 °C. The degradation temperature at 5% mass loss of all samples was over around 280 °C. The HBCSs exhibited excellent UV block and IR active properties with a stoichiometric ratio of the NIPHU prepolymer and EJCO of 1:1 (wt/wt) containing 5 wt % TARC and 15 wt % APTMS-ZnO nanoparticles. It was observed that the sample with 5 wt % TARC and 15 wt % APTMS-ZnO (HBCS-2) exhibited a uniform crosslinking and reinforcement network with a of 282 °C. This sample has successfully achieved good coating hardness and excellent UV and IR absorption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226854PMC
http://dx.doi.org/10.1021/acsomega.9b04388DOI Listing

Publication Analysis

Top Keywords

coating matrix
16
nonisocyanate polyhydroxyl
8
green polymer
8
coating systems
8
cellulose nanoparticles
8
niphu prepolymer
8
hbcss exhibited
8
tarc aptms-zno
8
coating
7
hbcss
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!