Construction of a and shuttle vector harboring the gene as a triclosan selection marker.

Heliyon

GenoFocus Ltd., 65 Techno 1-ro, Gwanpyeong-dong, Yuseong-gu, Daejeon, 34014, South Korea.

Published: May 2020

A new plasmid containing a mutated gene from as a triclosan selection marker was developed as a useful / shuttle vector. The pHT-FabL40 plasmid is stable in both gram-positive and gram-negative hosts with increased plasmid DNA yield in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226672PMC
http://dx.doi.org/10.1016/j.heliyon.2020.e03891DOI Listing

Publication Analysis

Top Keywords

shuttle vector
8
gene triclosan
8
triclosan selection
8
selection marker
8
construction shuttle
4
vector harboring
4
harboring gene
4
marker plasmid
4
plasmid mutated
4
mutated gene
4

Similar Publications

Current approaches in CRISPR-Cas systems for diabetes.

Prog Mol Biol Transl Sci

January 2025

R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India. Electronic address:

In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes.

View Article and Find Full Text PDF

Current progress in CRISPR-Cas systems for rare diseases.

Prog Mol Biol Transl Sci

January 2025

Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India. Electronic address:

The groundbreaking CRISPR-Cas gene editing method permits exact genetic code alteration. The "CRISPR" DNA protects bacteria from viruses. CRISPR-Cas utilizes a guide RNA to steer the Cas enzyme to the genome's gene editing target.

View Article and Find Full Text PDF

Current approaches in CRISPR-Cas system for metabolic disorder.

Prog Mol Biol Transl Sci

January 2025

School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India. Electronic address:

A new era in genomic medicine has been brought by the development of CRISPR-Cas technology, which presents hitherto unheard-of possibilities for the treatment of metabolic illnesses. The treatment approaches used in CRISPR/Cas9-mediated gene therapy, emphasize distribution techniques such as viral vectors and their use in preclinical models of metabolic diseases like hypercholesterolemia, glycogen storage diseases, and phenylketonuria. The relevance of high-throughput CRISPR screens for target identification in discovering new genes and pathways associated with metabolic dysfunctions is an important aspect of the discovery of new approaches.

View Article and Find Full Text PDF

Retrovirus-based manufacturing of chimeric antigen receptor-modified T cells for cancer therapy research.

Methods Cell Biol

January 2025

Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and LMU University Hospital, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany. Electronic address:

Treatment with autologous chimeric antigen receptor (CAR)-modified T cells can achieve outstanding clinical response rates in heavily pretreated patients with B and plasma cell malignancies. However, relapses occur, and they limit the efficacy of this promising treatment approach. The complex GMP-compliant production and high treatment costs cause that CAR T cells cannot yet be used in a broad population.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!