We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS and graphene. This heterostructure combines the benefits of a direct-gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS layer. The resulting charge-separated transient state is found to have a lifetime of ∼1 ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS and graphene bands as revealed by high-resolution ARPES. In combination with spin-selective optical excitation, the investigated WS/graphene heterostructure might provide a platform for efficient optical spin injection into graphene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220367PMC
http://dx.doi.org/10.1126/sciadv.aay0761DOI Listing

Publication Analysis

Top Keywords

ultrafast charge
8
direct evidence
4
evidence efficient
4
efficient ultrafast
4
charge separation
4
separation epitaxial
4
epitaxial ws/graphene
4
ws/graphene heterostructures
4
heterostructures time-
4
time- angle-resolved
4

Similar Publications

Discovering and utilizing the unique optoelectronic properties of transition metal dichalcogenides (TMDCs) is of great significance for developing next-generation electronic devices. In particular, research on Dirac state modulations of TMDCs under external strains is lacking. To fill this research gap, it has established a comprehensive database of 90 types of TMDCs and their response behaviors under external strains have been systematically investigated regarding the presence of Dirac cones and electronic structure evolutions.

View Article and Find Full Text PDF

Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS Heterostructure.

J Phys Chem Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.

View Article and Find Full Text PDF

Solvatochromic charge model of isonitrile probes for investigating hydrogen-bond dynamics with 2DIR spectroscopy.

J Chem Phys

January 2025

Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.

Isonitrile-derivatized amino acids are emerging as highly effective infrared (IR) probes for investigating the structures and dynamics of hydrogen (H)-bonds. These probes enable the quantification of chemical exchange processes in solute-solvent complexes via two-dimensional IR spectroscopy and hold significant promise for site-specific dynamic studies within proteins. Despite their potential, theoretical models that elucidate the solvatochromism of isonitriles remain underdeveloped.

View Article and Find Full Text PDF

Ultrafast Lithium-Ion Transport Engineered by Nanoconfinement Effect.

Adv Mater

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.

Amid the burgeoning demand for electrochemical energy storage and neuromorphic computing, fast ion transport behavior has attracted widespread attention at both fundamental and practical levels. Here, based on the nanoconfined channel of graphene oxide laminar membranes (GOLMs), the lithium ionic conductivity typically exceeding 10 mS cm is realized, one to three orders of magnitude higher than traditional liquid or solid lithium-ion electrolyte. Specifically, the nanoconfined lithium hexafluorophosphate (LiPF)-ethylene carbonate (EC)/ dimethyl carbonate (DMC) electrolyte demonstrates the ionic conductivity of 170 mS cm, outperforming the bulk counterpart by ≈16 fold.

View Article and Find Full Text PDF

Atomic Manipulation on 2D Sumanene for Precise Fermi Level Positioning in Ultrafast High-Capacity Alkali Metal Batteries.

Nano Lett

January 2025

State Key Laboratory of Structural Analysis for Industrial Equipment & School of Physics, Dalian University of Technology, Dalian 116024 People's Republic of China.

A sumanene monolayer, with a Kagome-like lattice and two flat bands and two Dirac cones in the band structures, can be atomically assembled by C clusters. In this paper, first-principles simulations indicate surface charge doping can purposely shift the Fermi level between Dirac cones and flat bands. Interestingly, Li/Na/K atoms can be well distributed in bowl-like structures, transforming the semiconducting sumanene monolayer into a semimetal by shifting the Fermi energy exactly to the Dirac cone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!