Data on miRNome changes in human cells exposed to nano- or ionic- forms of Cadmium.

Data Brief

University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/A, 43124 Parma, Italy.

Published: June 2020

The data included in this paper are associated with a research article entitled 'Differences in toxicity, mitochondrial function and miRNome in human cells exposed to Cd as CdS quantum dots or ionic Cd' [1]. The article concerns the use of miRNAs as biomarkers for engineered nanomaterials (ENMs) risk assessment. Two different type of human cells, HepG2 and THP-1, were exposed to different forms of Cadmium: nanoscale, as CdS quantum dots (CdS QDs), and ionic, as CdSO 8/3 -hydrate (Cd(II)). The cells were treated with sub-toxic doses of CdS QDs; 3 µg ml in HepG2 and 6.4 µg ml and 50 µg ml in THP-1, as well as equivalent cadmium doses as Cd(II). In this dataset, changes in expression levels of miRNAs are reported. In addition, GO enrichment analyses of target genes of miRNAs modulated by Cd stress, network analysis of the microRNome and an pathway analysis are also reported. These data enhance and also summarize much of the data independently presented in the research article and therefore, must be considered as supplementary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225374PMC
http://dx.doi.org/10.1016/j.dib.2020.105636DOI Listing

Publication Analysis

Top Keywords

human cells
12
cells exposed
8
forms cadmium
8
cds quantum
8
quantum dots
8
cds qds
8
data
4
data mirnome
4
mirnome changes
4
changes human
4

Similar Publications

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!