Hypoxia-induced pulmonary vascular constriction and structure remodeling are the main causes of hypoxic pulmonary hypertension. In the present study, an adeno-associated virus vector, containing Tie2 promoter and hypoxia response elements, was designed and named HTSFcAng(1-7). Its targeting, hypoxic inducibility, and vascular relaxation were examined , and its therapeutic effects on hypobaric hypoxia-induced pulmonary hypertension were examined in rats. Transfection of HTSFcAng(1-7) specifically increased the expression of angiotensin-(1-7) in endothelial cells in normoxia. Hypoxia increased the expression of angiotensin-(1-7) in HTSFcAng(1-7)-transfected endothelial cells. The condition medium from HTSFcAng(1-7)-transfected endothelial cells inhibited the hypoxia-induced proliferation of pulmonary artery smooth muscle cells, relaxed the pulmonary artery rings, totally inhibited hypoxia-induced early contraction, enhanced maximum relaxation, and reversed phase II constriction to sustained relaxation. In hypoxic pulmonary hypertension rats, treatment with HTSFcAng(1-7) by nasal drip adeno-associated virus significantly reversed hypoxia-induced hemodynamic changes and pulmonary artery-wall remodeling, accompanied by the concomitant overexpression of angiotensin-(1-7), mainly in the endothelial cells in the lung. Therefore, hypoxia-inducible overexpression of angiotensin-(1-7) in pulmonary endothelial cells may be a potential strategy for the gene therapy of hypoxic pulmonary hypertension.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225382 | PMC |
http://dx.doi.org/10.1016/j.omtm.2020.04.008 | DOI Listing |
Methods Mol Biol
December 2024
Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.
Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.
View Article and Find Full Text PDFHistochem Cell Biol
December 2024
Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Hematopoietic stem cells (HSCs) reside in a milieu that supports their functions, differentiation, and survival. This niche consists of several types of cells, including mesenchymal stem/stromal cells, endothelial cells, osteoblasts, megakaryocytes, macrophages, adipocytes, lymphoid cells, and nerve fibers. The interactions between these cells and HSCs have a role in HSC fate.
View Article and Find Full Text PDFClin Exp Metastasis
December 2024
Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA.
Copper promotes tumor growth and metastasis through a variety of mechanisms, most notably as a cofactor within the lysyl oxidase (LOX) family of secreted cuproenzymes. Members of this family, which include LOX and LOX-like enzymes LOXL1-4, catalyze the copper-dependent crosslinking of collagens and elastin within the extracellular matrix (ECM). Elevated LOX expression is associated with higher incidence and worse prognosis in multiple cancers, including colorectal, breast, pancreatic, and head and neck.
View Article and Find Full Text PDFElife
December 2024
Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.
A major challenge in the stem cell biology field is the ability to produce fully functional cells from induced pluripotent stem cells (iPSCs) that are a valuable resource for cell therapy, drug screening, and disease modelling. Here, we developed a novel inducible CRISPR-mediated activation strategy (iCRISPRa) to drive the expression of multiple endogenous transcription factors (TFs) important for in vitro cell fate and differentiation of iPSCs to haematopoietic progenitor cells. This work has identified a key role for IGFBP2 in developing haematopoietic progenitors.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Sanford Consortium for Regenerative Medicine; Sanford Burnham Prebys Medical Discovery Institute; Department of Pediatrics, University of California, San Diego School of Medicine;
Human lung tissue is composed of an interconnected network of epithelium, mesenchyme, endothelium, and immune cells from the upper airway of the nasopharynx to the smallest alveolar sac. Interactions between these cells are crucial in lung development and disease, acting as a barrier against harmful chemicals and pathogens. Current in vitro co-culture models utilize immortalized cell lines with different biological backgrounds, which may not accurately represent the cellular milieu or interactions of the lung.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!