Rapid and accurate diagnosis of bovine respiratory disease (BRD) presents a substantial challenge to the North American cattle industry. Here we utilize recombinase polymerase amplification (RPA), a fast and sensitive isothermal DNA-based technology for the detection of four BRD pathogens (), genes coding antimicrobial resistance (AMR) and integrative conjugative elements (ICE) which can harbor AMR genes. Eleven RPA assays were designed and validated including: a) one conventional species-specific multiplex assay targeting the 4 BRD pathogens, b) two species-specific real-time multiplex RPA assays targeting / and /, respectively with a novel competitive internal amplification control, c) seven conventional assays targeting AMR genes (), and d) one real-time assay targeting ICE. Each real-time RPA assay was tested on 100 deep nasopharyngeal swabs (DNPS) collected from feedlot cattle previously assessed for targets using either culture methods and/or polymerase chain reaction (PCR) verification (TC-PCR). The developed RPA assays enabled sensitive and accurate identification of BRD agents and AMR/ICE genes directly from DNPS, in a shorter period than TC-PCR, showing considerable promise as a tool for point-of-care identification of BRD pathogens and antimicrobial resistance genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212441 | PMC |
http://dx.doi.org/10.3389/fvets.2020.00208 | DOI Listing |
Vet Med (Praha)
December 2024
Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Wasit, Wasit, Iraq.
Bovine respiratory disease (BRD) develops from complex interactions among environmental, host and pathogenic factors. This study aimed to phenotypically identify isolated from cattle with BRD and assess antimicrobial susceptibility and determining the molecular phylogeny of local strains. Between November 2023 and March 2024, nasal swabs were collected from 93 cattle with BRD, before culturing for phenotypic analysis, and performing the polymerase chain reaction (PCR) for molecular characterisation.
View Article and Find Full Text PDFVet Microbiol
January 2025
Purdue University, Department of Animal Sciences, West Lafayette, IN 47907 USA. Electronic address:
Mannheimia haemolytica is one of the most common causative agents of bovine respiratory disease (BRD); however, antibiotic resistance in this species is increasing, making treatment more difficult. Integrative-conjugative elements (ICE), a subset of mobile genetic elements (MGE), encoding up to 100 genes have been reported in Mannheimia haemolytica genomes to confer multidrug resistance, including resistance to antibiotics commonly used in the treatment of BRD. However, the presence of antibiotic resistance genes (ARGs) does not always agree with phenotypic resistance.
View Article and Find Full Text PDFVet Sci
December 2024
Biovet Inc., Division of Antech Diagnostics and Mars Petcare Science & Diagnostics Company, Saint-Hyacinthe, QC J2S 8W2, Canada.
The bovine respiratory disease complex (BRD) is a multifactorial disease caused by various bacterial and viral pathogens. Using rapid pathogen detection techniques is helpful for tailoring therapeutic and preventive strategies in affected animals and herds. The objective of this study was to report the frequency of 10 pathogens by multiplex RT-qPCR on samples submitted for BRD diagnosis to a diagnostic laboratory (Biovet Inc.
View Article and Find Full Text PDFVet Sci
November 2024
Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79016, USA.
Bovine respiratory disease (BRD) is a multifactorial disease complex commonly affecting beef and dairy operations. Vaccination against major BRD-related pathogens is routinely performed for disease prevention; however, uniform reporting of health and performance outcomes is infrequent. Our objective was to evaluate the effect of commercially available BRD-pathogen vaccination on titer response with respect to health or performance in beef and dairy cattle.
View Article and Find Full Text PDFFront Microbiol
November 2024
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!