Thioimidate Bond Formation between Cardiac Troponin C and Nitrile-containing Compounds.

ACS Med Chem Lett

Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.

Published: June 2019

We have investigated the mechanism and reactivity of covalent bond formation between cysteine-84 of the regulatory domain of cardiac troponin C and compounds containing a nitrile moiety similar to the calcium sensitizer levosimendan. The results of modifications to the levosimendan framework ranged from a large increase in covalent bond formation to complete inactivity. We present the biological activity of one of the most potent compounds. Limitations, including compound solubility and degradation at acidic pH, have prevented thorough investigation of the potential of these compounds. Our studies reveal the efficacious nature of the malononitrile moiety in targeting cNTnC and its potential in future cardiotonic drug design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227049PMC
http://dx.doi.org/10.1021/acsmedchemlett.9b00168DOI Listing

Publication Analysis

Top Keywords

bond formation
12
cardiac troponin
8
covalent bond
8
thioimidate bond
4
formation cardiac
4
troponin nitrile-containing
4
compounds
4
nitrile-containing compounds
4
compounds investigated
4
investigated mechanism
4

Similar Publications

Reconsideration of the P-clusters in VFe proteins using the bond-valence method: towards their electron transfer and protonation.

Acta Crystallogr D Struct Biol

February 2025

State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.

P-clusters have been statistically analysed using the bond-valence sum (BVS) method together with weighting schemes. The crystallographic data come from the VFe proteins deposited in the Protein Data Bank (PDB) with high resolutions of better than 1.35 Å.

View Article and Find Full Text PDF

The multifaceted role of XCL1 in health and disease.

Protein Sci

February 2025

Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.

The chemokine XC motif chemokine ligand 1 (XCL1) is an unusually specialized member of a conserved family of around 50 small, secreted proteins that are best known for their ability to stimulate the directional migration of cells. All chemokines adopt a very similar folded structure that binds a specific G protein-coupled receptor (GPCR), and most chemokines bind extracellular matrix glycosaminoglycans, often in a dimeric or oligomeric form. Owing in part to the lack of a disulfide bond that is conserved in all other chemokines, XCL1 interconverts between two distinct structures with distinct functions.

View Article and Find Full Text PDF

Dynamic covalent polymer networks (DCPN) provide an important solution to the challenging recyclability of thermoset elastomers. However, dynamic bonds exhibit relatively weak bond energies, considerably decreasing the mechanical properties of DCPN. Herein, a novel reinforcement strategy for DCPN involving the in situ formation of supramolecular organic nanofillers through asynchronous polymerization is proposed.

View Article and Find Full Text PDF

Exploring the correlation between chemical bonding and structural distortions in TbCuTe.

J Phys Condens Matter

January 2025

Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.

The design of solid-state materials requests a thorough understanding of the structural preferences among plausible structure models. Since the bond energy contributes to the formation energy of a given structure model, it also is decisive to determine the nature of chemical bonding for a given material. In this context, we were motivated to explore the correlation between chemical bonding and structural distortions within the low-dimensional tellurium fragments in TbCuTe.

View Article and Find Full Text PDF

Corneal neovascularization (CorNV) develops under various pathological conditions and is one of the main causes of blindness. Due to that CorNV progression involves multiple steps, anti-vascular endothelial growth factor (VEGF) drugs alone could not sufficiently suppress this process, highlighting an urgent need for an efficient delivery system for the multi-step management of CorNV. In this study, a neutrophil nanovesicle-based eye drop (NCCR) is developed for CorNV therapy that simultaneously inhibits angiogenesis and inflammation, while eliminating pathological cells through chemoexcited photodynamic therapy (PDT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!