Robots are gaining an increasingly important role in industrial production. Notably, a high level of acceptance is an important factor for co-working situation between human and robot. The aim of the present study was to investigate the differences in the perception of anthropomorphic and robotic movements using models consisting of a virtual robot and a digital human. Videos of each model displayed different degrees of human likeness or robot likeness in speed and trajectories of placing movements. Female and male participants were asked to rate on a Likert scale the perceived levels of human likeness or robot likeness in the two models. Overall, results suggest that males were sensitive to the differences between robotic and anthropomorphic movements, whereas females showed no difference between them. However, compared to males, female participants attributed more anthropomorphic features to robotic movements. The study is a first step toward a more comprehensive understanding of the human ability to differentiate between anthropomorphic and robotic movements and suggests a crucial role of gender in the human-robot interaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205409 | PMC |
http://dx.doi.org/10.3389/fpsyg.2020.00797 | DOI Listing |
Biomed Signal Process Control
August 2024
CNRS-University of Montpellier LIRMM, UMR5506, Interactive Digital Human, Montpellier, France.
Correlation coefficients play a pivotal role in quantifying linear relationships between random variables. Yet, their application to time series data is very challenging due to temporal dependencies. This paper introduces a novel approach to estimate the statistical significance of correlation coefficients in time series data, addressing the limitations of traditional methods based on the concept of effective degrees of freedom (or effective sample size, ESS).
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China.
Background: Hyperuricemia (HUA), marked by elevated serum urate levels, is increasingly prevalent worldwide. The relationship between lifestyle factors such as sleep duration, daytime napping, and HUA risk remains unclear. Although some studies suggest that sleep variables, including short or long sleep durations and napping, may influence serum uric acid levels, results are inconsistent.
View Article and Find Full Text PDFSci Robot
January 2025
Research Center for Information and Communication Technologies, Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain.
Robots have to adjust their motor behavior to changing environments and variable task requirements to successfully operate in the real world and physically interact with humans. Thus, robotics strives to enable a broad spectrum of adjustable motor behavior, aiming to mimic the human ability to function in unstructured scenarios. In humans, motor behavior arises from the integrative action of the central nervous system and body biomechanics; motion must be understood from a neuromechanics perspective.
View Article and Find Full Text PDFSoft Robot
January 2025
Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, UAE.
The inherent challenges of robotic underwater exploration, such as hydrodynamic effects, the complexity of dynamic coupling, and the necessity for sensitive interaction with marine life, call for the adoption of soft robotic approaches in marine exploration. To address this, we present a novel prototype, ZodiAq, a soft underwater drone inspired by prokaryotic bacterial flagella. ZodiAq's unique dodecahedral structure, equipped with 12 flagella-like arms, ensures design redundancy and compliance, ideal for navigating complex underwater terrains.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany.
The emerging new generation of small-scaled acoustic microrobots is poised to expedite the adoption of microrobotics in biomedical research. Recent designs of these microrobots have enabled intricate bioinspired motions, paving the way for their real-world applications. We present a multiorifice design of air-filled spherical microrobots that convert acoustic wave energy to efficient propulsion through a resonant encapsulated microbubble.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!