Purpose: The purpose of this study is to compare the detection performance of the 3-dimensional convolutional neural network (3D CNN)-based computer-aided detection (CAD) models with radiologists of different levels of experience in detecting pulmonary nodules on thin-section computed tomography (CT).

Patients And Methods: We retrospectively reviewed 1109 consecutive patients who underwent follow-up thin-section CT at our institution. The 3D CNN model for nodule detection was re-trained and complemented by expert augmentation. The annotations of a consensus panel consisting of two expert radiologists determined the ground truth. The detection performance of the re-trained CAD model and three other radiologists at different levels of experience were tested using a free-response receiver operating characteristic (FROC) analysis in the test group.

Results: The detection performance of the re-trained CAD model was significantly better than that of the pre-trained network (sensitivity: 93.09% vs 38.44%). The re-trained CAD model had a significantly better detection performance than radiologists (average sensitivity: 93.09% vs 50.22%), without significantly increasing the number of false positives per scan (1.64 vs 0.68). In the training set, 922 nodules less than 3 mm in size in 211 patients at high risk were recommended for follow-up CT according to the Fleischner Society Guidelines. Fifteen of 101 solid nodules were confirmed to be lung cancer.

Conclusion: The re-trained 3D CNN-based CAD model, complemented by expert augmentation, was an accurate and efficient tool in identifying incidental pulmonary nodules for subsequent management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196793PMC
http://dx.doi.org/10.2147/CMAR.S239927DOI Listing

Publication Analysis

Top Keywords

detection performance
16
cad model
16
re-trained cad
12
nodule detection
8
subsequent management
8
convolutional neural
8
neural network
8
radiologists levels
8
levels experience
8
pulmonary nodules
8

Similar Publications

The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.

View Article and Find Full Text PDF

The relationship between serum vitamin C levels and high-sensitivity C-reactive protein in children.

Sci Rep

December 2024

Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, 450000, P. R. China.

The relationship between vitamin C nutritional status and inflammation has garnered increasing attention, but studies in younger populations are limited. This study aimed to investigate the association between serum vitamin C and high-sensitivity C-reactive protein (hs-CRP) levels in children and adolescents. A cross-sectional analysis was conducted using data from the National Health and Nutrition Examination Survey (NHANES).

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

Design of integrated radar and communication system based on solvable chaotic signal.

Sci Rep

December 2024

Shaanxi Key Laboratory of Complex System Control and Intelligent Informantion Processing, Xi'an University of Technology, Xi'an 710048, China.

In the integrated radar and communication system (IRCS), the design of signal that can simultaneously satisfy the radar detection and communication transmission is very important and difficult. Recently, some new properties of a class of solvable chaotic system have been studied for wireless applications, such as low bit error rate (BER) wireless communications and low cost target detection. In this paper, a novel IRCS based on the chaotic signal is proposed, and the performance of proposed scheme is analyzed.

View Article and Find Full Text PDF

A real-world pharmacovigilance analysis of potential ototoxicity associated with sacubitril/valsartan based on FDA Adverse Event Reporting System (FAERS).

Sci Rep

December 2024

Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Sacubitril/valsartan, a first-in-class angiotensin receptor neprilysin inhibitor, is widely used to treat heart failure. Despite its efficacy, sacubitril/valsartan inevitably causes adverse events such as hypotension, renal dysfunction, hyperkalemia, and angioedema. Sacubitril/valsartan-associated ototoxicity is often underreported in clinical studies and real-world settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!