Renewable energy sources, such as wind energy, are essential tools for reducing the causes of climate change, but wind turbines can pose a collision risk for bats. To date, the population-level effects of wind-related mortality have been estimated for only 1 bat species. To estimate temporal trends in bat abundance, we considered wind turbines as opportunistic sampling tools for flying bats (analogous to fishing nets), where catch per unit effort (carcass abundance per monitored turbine) is a proxy for aerial abundance of bats, after accounting for seasonal variation in activity. We used a large, standardized data set of records of bat carcasses from 594 turbines in southern Ontario, Canada, and corrected these data to account for surveyor efficiency and scavenger removal. We used Bayesian hierarchical models to estimate temporal trends in aerial abundance of bats and to explore the effect of spatial factors, including landscape features associated with bat habitat (e.g., wetlands, croplands, and forested lands), on the number of mortalities for each species. The models showed a rapid decline in the abundance of 4 species in our study area; declines in capture of carcasses over 7 years ranged from 65% (big brown bat [Eptesicus fuscus]) to 91% (silver-haired bat [Lasionycteris noctivagans]). Estimated declines were independent of the effects of mitigation (increasing wind speed at which turbines begin to generate electricity from 3.5 to 5.5 m/s), which significantly reduced but did not eliminate bat mortality. Late-summer mortality of hoary (Lasiurus cinereus), eastern red (Lasiurus borealis), and silver-haired bats was predicted by woodlot cover, and mortality of big brown bats decreased with increasing elevation. These landscape predictors of bat mortality can inform the siting of future wind energy operations. Our most important result is the apparent decline in abundance of four common species of bat in the airspace, which requires further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984092 | PMC |
http://dx.doi.org/10.1111/cobi.13554 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha, 61421, KSA, Saudi Arabia.
In wind energy generation systems, ensuring high energy quality is critical but is often compromised due to the limited performance and durability of conventional regulators. To address this, this work presents a novel controller for managing the machine-side inverter of a single-rotor large wind turbine system using an induction machine-type generator. The proposed controller is designed using proportional, integral, and derivative error-based mechanisms, which fundamentally differ from traditional proportional-integral (PI) regulators.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Ultrasound Research Institute, Kaunas University of Technology, LT-51423 Kaunas, Lithuania.
A signal-processing algorithm for the detailed determination of delamination in multilayer structures is proposed in this work. The algorithm is based on calculating the phase velocity of the Lamb wave A mode and estimating this velocity dispersion. Both simulation and experimental studies were conducted to validate the proposed technique.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.
Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, Kunsan National University, Gunsan-si 54150, Republic of Korea.
The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion-a process of resin injection and curing in carbon fibers-is prone to initial defects, such as pores, wrinkles, and delamination. This study suggests employing the pultrusion technique for spar production to consistently obtain a uniform cross-section and augment the reliability of both the manufacturing process and the design.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hainan Institute, Zhejiang University, Sanya 572024, China.
In recent decades, Offshore Wind Turbines (OWTs) have become crucial to the clean energy transition, yet they face significant safety challenges due to harsh marine conditions. Key issues include blade damage, material corrosion, and structural degradation, necessitating advanced materials and real-time monitoring systems for enhanced reliability. Carbon fiber has emerged as a preferred material for turbine blades due to its strength-to-weight ratio, although its high cost remains a barrier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!