A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tetramethylpyrazine Protects Blood-Spinal Cord Barrier Integrity by Modulating Microglia Polarization Through Activation of STAT3/SOCS3 and Inhibition of NF-кB Signaling Pathways in Experimental Autoimmune Encephalomyelitis Mice. | LitMetric

We previously reported that tetramethylpyrazine (TMP) alleviates experimental autoimmune encephalomyelitis (EAE) by decreasing glia activation. Activated microglia has been shown to mediate blood-spinal cord barrier (BSCB) disruption, which is a primary and continuous pathological characteristic of multiple sclerosis (MS). Therefore, in this study, we further investigated whether TMP protects the BSCB integrity by inhibition of glia activation to alleviate EAE. Extravasation of evans blue was used to detect the BSCB disruption. Tumor necrosis factor-α (TNF-α)/interlukine-1β (IL-1β) and interlukine-4 (IL-4)/interlukine-10 (IL-10) were determined by enzyme-linked immunosorbent assay. BV2 glial cells stimulated by interferon-γ (IFN-γ) were co-cultured with human brain microvascular endothelial cells to investigate the effect of TMP on the BSCB disruption. Flow cytometry was used to analyze the microglia phenotype. Western blot was performed to reveal the signaling pathways involved in the microglia activation. In this study, most importantly, we found that TMP protects the BSCB integrity by modulating microglia polarization from M1 phenotype to M2 phenotype through activation of STAT3/SOCS3 and inhibition of NF-кB signaling pathways. Moreover, TMP significantly preserves the tight junction proteins, reduces the secretion of pro-inflammatory cytokines (TNF-α, IL-1β) and increases the secretion of anti-inflammatory cytokines (IL-4, IL-10) from IFN-γ-stimulated BV2 microglia cells. Consequently, protection of the BSCB integrity leads to alleviation of clinical symptoms and demyelination in EAE mice. Therefore, TMP might be an effective therapeutic agent for cerebral disorders with BBB or BSCB disruption, such as ischemic stroke, MS, and traumatic brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-020-00878-3DOI Listing

Publication Analysis

Top Keywords

bscb disruption
16
signaling pathways
12
bscb integrity
12
blood-spinal cord
8
cord barrier
8
integrity modulating
8
modulating microglia
8
microglia polarization
8
activation stat3/socs3
8
stat3/socs3 inhibition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!