Molecular causes of primary microcephaly and related diseases: a report from the UNIA Workshop.

Chromosoma

Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.

Published: June 2020

The International University of Andalucía (UNIA) Current Trends in Biomedicine Workshop on Molecular Causes of Primary Microcephaly and Related Diseases took place in Baeza, Spain, November 18-20, 2019. This meeting brought together scientists from Europe, the USA and China to discuss recent advances in our molecular and genetic understanding of a group of rare neurodevelopmental diseases characterised by primary microcephaly, a condition in which head circumference is smaller than normal at birth. Microcephaly can be caused by inherited mutations that affect key cellular processes, or environmental exposure to radiation or other toxins. It can also result from viral infection, as exemplified by the recent Zika virus outbreak in South America. Here we summarise a number of the scientific advances presented and topics discussed at the meeting.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00412-020-00737-6DOI Listing

Publication Analysis

Top Keywords

primary microcephaly
12
molecular primary
8
microcephaly diseases
8
microcephaly
4
diseases report
4
report unia
4
unia workshop
4
workshop international
4
international university
4
university andalucía
4

Similar Publications

The Genetics of Neurodevelopmental Disorders Lab in Padua provided a new intellectual disability (ID) Panel challenge for computational methods to predict patient phenotypes and their causal variants in the context of the Critical Assessment of the Genome Interpretation, 6th edition (CAGI6). Eight research teams submitted a total of 30 models to predict phenotypes based on the sequences of 74 genes (VCF format) in 415 pediatric patients affected by Neurodevelopmental Disorders (NDDs). NDDs are clinically and genetically heterogeneous conditions, with onset in infant age.

View Article and Find Full Text PDF

Ubiquitin-like modifier-activating enzyme 1 interacts with Zika virus NS5 and promotes viral replication in the infected cell.

J Gen Virol

January 2025

Unidad de Medicina Molecular, Instituto de Biomedicina de UCLM (IB-UCLM), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain.

Translation errors, impaired folding or environmental stressors (e.g. infection) can all lead to an increase in the presence of misfolded proteins.

View Article and Find Full Text PDF

Ufmylation: a potential modification for neurological diseases.

Curr Neuropharmacol

January 2025

Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.

Neurological disorders are the leading health threats worldwide, characterized by impairments in consciousness, cognition, movement, and sensation, and can even lead to death. UFMylation is a novel post-translational modification (PTM) that serves as an important regulatory factor, promoting the complexity of protein structures and enhancing the diversity and specificity of functions. In UFMylation, ubiquitin-fold modifier 1 (UFM1) is covalently transferred to the primary amine of a lysine residue on the target protein through the synergistic action of three enzymes: the activating enzyme E1 of UFM1, the coupling enzyme E2 of UFM1, and the ligase E3.

View Article and Find Full Text PDF

Brain organoids offer unprecedented insights into brain development and disease modeling and hold promise for drug screening. Significant hindrances, however, are morphological and cellular heterogeneity, inter-organoid size differences, cellular stress, and poor reproducibility. Here, we describe a method that reproducibly generates thousands of organoids across multiple hiPSC lines.

View Article and Find Full Text PDF

LIG4 syndrome is an exceptionally rare primary immune deficiency. It is an autosomal recessive genetic disease, falling within the spectrum of genetic disorders characterized by impaired DNA damage response mechanisms. Common clinical characteristics encompass microcephaly, growth retardation, developmental delays, facial deformities, variable immune deficiencies, pancytopenia, heightened susceptibility to malignant tumors, and significant clinical and cellular radiosensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!