Synthetic promoter design in Escherichia coli based on a deep generative network.

Nucleic Acids Res

Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China.

Published: July 2020

Promoter design remains one of the most important considerations in metabolic engineering and synthetic biology applications. Theoretically, there are 450 possible sequences for a 50-nt promoter, of which naturally occurring promoters make up only a small subset. To explore the vast number of potential sequences, we report a novel AI-based framework for de novo promoter design in Escherichia coli. The model, which was guided by sequence features learned from natural promoters, could capture interactions between nucleotides at different positions and design novel synthetic promoters in silico. We combined a deep generative model that guides the search for artificial sequences with a predictive model to preselect the most promising promoters. The AI-designed promoters were optimized based on the promoter activity in E. coli and the predictive model. After two rounds of optimization, up to 70.8% of the AI-designed promoters were experimentally demonstrated to be functional, and few of them shared significant sequence similarity with the E. coli genome. Our work provided an end-to-end approach to the de novo design of novel promoter elements, indicating the potential to apply deep learning methods to de novo genetic element design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337522PMC
http://dx.doi.org/10.1093/nar/gkaa325DOI Listing

Publication Analysis

Top Keywords

promoter design
12
design escherichia
8
escherichia coli
8
deep generative
8
design novel
8
predictive model
8
ai-designed promoters
8
design
6
promoters
6
promoter
5

Similar Publications

De novo biosynthesis of quercetin in Yarrowia Lipolytica through systematic metabolic engineering for enhanced yield.

Bioresour Bioprocess

January 2025

Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.

Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids.

View Article and Find Full Text PDF

CTB6 Confers Cold Tolerance at the Booting Stage by Maintaining Tapetum Development in Rice.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Rice is highly sensitive to cold stress, particularly at the booting stage, which significantly threatens rice production. In this study, we cloned a gene, CTB6, encoding a lipid transfer protein involved in cold tolerance at the booting stage in rice, based on our previous fine-mapped quantitative trait locus (QTL) qCTB10-2. CTB6 is mainly expressed in the tapetum and young microspores of the anther.

View Article and Find Full Text PDF

Purpose: Renal medullary carcinoma (RMC) is a highly aggressive malignancy defined by the loss of the SMARCB1 tumor suppressor. It mainly affects young individuals of African descent with sickle cell trait, and it is resistant to conventional therapies used for other renal cell carcinomas. This study aimed to identify potential biomarkers for early detection and disease monitoring of RMC.

View Article and Find Full Text PDF

Single minimal conjunctival incision for rectus muscles: a pilot feasibility study.

Ther Adv Ophthalmol

January 2025

Instituto Ramón Castroviejo de Investigaciones Oftalmológicas, Madrid, Spain.

Background: Small conjunctival incision size is desirable in strabismus surgery under topical anesthesia.

Objective: To study the feasibility and tolerability of a small bulbar conjunctival incision (SB).

Design: Non-randomized feasibility pilot study.

View Article and Find Full Text PDF

DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!