A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast deposition of an ultrathin, highly crystalline organic semiconductor film for high-performance transistors. | LitMetric

Fast deposition of an ultrathin, highly crystalline organic semiconductor film for high-performance transistors.

Nanoscale Horiz

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

Published: July 2020

Ultrathin organic semiconductor (OSC) crystalline films hold the promise of achieving high-performance, flexible, and transparent organic electronic devices. However, fast and high-throughput solution deposition of uniform pinhole-free ultrathin OSC crystalline films over a large area remains a challenge. Here, we demonstrate that a mixed solvent system can obviously alter the fluid flow dynamics and significantly improve the blade-coating quality of the film, enabling us to achieve a large-area continuous and smooth bis(triethylsilylethynyl)anthradithiophene (Dif-TES-ADT) ultrathin film at a fast coating speed of ∼1 mm s, much superior to the 30-50 μm s for conventional methods. Also, the ultrathin, highly crystalline Dif-TES-ADT film-based organic thin-film transistors (OTFTs) exhibit a maximum mobility up to 5.54 cm V s, which is on par with the Dif-TES-ADT single crystal-based devices and among the highest for Dif-TES-ADT film-based devices. This finding should open a new route to achieve ultrathin OSC crystalline film-based high-performance flexible and transparent electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nh00096eDOI Listing

Publication Analysis

Top Keywords

osc crystalline
12
ultrathin highly
8
highly crystalline
8
organic semiconductor
8
crystalline films
8
high-performance flexible
8
flexible transparent
8
ultrathin osc
8
dif-tes-adt film-based
8
ultrathin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!