The urgency for affordable and reliable detectors for ionizing radiation in medical diagnostics, nuclear control and particle physics is generating growing demand for scintillator devices combining efficient scintillation, fast emission lifetime, high interaction probability with ionizing radiation and mitigated reabsorption losses in large-volume/high-density detectors. To date, the simultaneous achievement of all such features is still an open challenge. Here we realize this regime with poly(methyl methacrylate) nanocomposites embedding CsPbBr perovskite nanocrystals as sensitizers for a conjugated organic dye featuring a large Stokes shift and a fast emission lifetime in the red spectral region. Complete energy transfer from the nanocrystals to the dye under both X-rays and α-particle excitation results in highly stable radioluminescence with an efficiency comparable to that of commercial-grade inorganic and plastic scintillators; an ~3.4 ns emission lifetime, competitive with fast lanthanide scintillators; and reabsorption-free waveguiding for long optical distances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41565-020-0683-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!