Acquired therapy resistance is a major problem for anticancer treatment, yet the underlying molecular mechanisms remain unclear. Using an established breast cancer cellular model, we show that endocrine resistance is associated with enhanced phenotypic plasticity, indicated by a general downregulation of luminal/epithelial differentiation markers and upregulation of basal/mesenchymal invasive markers. Consistently, similar gene expression changes are found in clinical breast tumours and patient-derived xenograft samples that are resistant to endocrine therapies. Mechanistically, the differential interactions between oestrogen receptor α and other oncogenic transcription factors, exemplified by GATA3 and AP1, drive global enhancer gain/loss reprogramming, profoundly altering breast cancer transcriptional programs. Our functional studies in multiple culture and xenograft models reveal a coordinated role of GATA3 and AP1 in re-organizing enhancer landscapes and regulating cancer phenotypes. Collectively, our study suggests that differential high-order assemblies of transcription factors on enhancers trigger genome-wide enhancer reprogramming, resulting in transcriptional transitions that promote tumour phenotypic plasticity and therapy resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737911PMC
http://dx.doi.org/10.1038/s41556-020-0514-zDOI Listing

Publication Analysis

Top Keywords

transcription factors
12
phenotypic plasticity
12
breast cancer
12
enhancer reprogramming
8
high-order assemblies
8
assemblies transcription
8
endocrine resistance
8
therapy resistance
8
gata3 ap1
8
enhancer
4

Similar Publications

Objective: To explore the association between smoking, genetic susceptibility and early menopause (EM) and clarify the potential mechanisms underlying this relationship.

Design: An observational and Transcriptome-wide association analysis (TWAS) study.

Setting: UK Biobank and public summary statistics.

View Article and Find Full Text PDF

Genomic identification of the gene family in apple and functional analysis of involved in flowering transition.

Mol Breed

January 2025

College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China.

Unlabelled: Apple is a crucial economic product extensively cultivated worldwide. Its production and quality are closely related to the floral transition, which is regulated by intricate molecular and environmental factors. () is a transcription factor that is involved in regulating plant growth and development, with certain play significant roles in regulating flowering.

View Article and Find Full Text PDF

Identification of transcription factor-lipid droplet-related gene biomarkers for the prognosis of post-acute myocardial infarction-induced heart failure.

Front Cardiovasc Med

December 2024

Department of Cardiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.

Introduction: Patients with acute myocardial infarction (AMI) are at high risk of progressing to heart failure (HF). Recent research has shown that lipid droplet-related genes (LDRGs) play a crucial role in myocardial metabolism following MI, thereby influencing the progression to HF.

Methods: Weighted gene co-expression network analysis (WGCNA) and differential expression gene analysis were used to screen a transcriptome dataset of whole blood cells from AMI patients with (AMI HF,  = 16) and without progression (AMI no-HF,  = 16).

View Article and Find Full Text PDF

Background: It has been demonstrated that nintedanib can inhibit the proliferation of gastric cancer cells, but the specific mechanism of action is unclear.

Objective: Investigating the changes of key factors involved in gene transcription and post-transcriptional regulation during the process of treating gastric cancer with nintedanib.

Methods: In this study, we performed transcriptome sequencing on gastric cancer cell groups treated with nintedanib and control groups.

View Article and Find Full Text PDF

Implications of the SNHG10/miR-665/RASSF5/NF-κB pathway in dihydromyricetin-mediated ischemic stroke protection.

PeerJ

December 2024

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.

Ischemic stroke (IS) remains a leading cause of disability and mortality worldwide, and inflammation and oxidative stress play significant roles in its pathogenesis. This study investigates the effects of dihydromyricetin (DHM) on IS using RT-qPCR and western blot with SH-SY5Y cells, focusing on its effects on the small nucleolar RNA host gene 10 (SNHG10)/microRNA (miR)-665/Ras association domain family member 5 (RASSF5) axis and nuclear factor-kappa B (NF-κB) signaling. In addition, the effects of the SNHG10/miR-665/RASSF5 axis on SH-SY5Y cell activity, apoptosis, oxidative stress, and inflammatory markers were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!