Nature of power electronics and integration of power conversion with communication for talkative power.

Nat Commun

College of Electrical Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang Province, China.

Published: May 2020

Power electronics and communication electronics are both based on electromagnetic theory, but they are usually regarded as two distinct subfields in electrical engineering. In fact, however, electric power is the most common matter-based carrier of messages; thus, power electronics and communications can be jointly considered. Here we study the essential nature of dc-dc power converters and characterize the similarity of their operation principle to that of communication systems. Based on this similarity and the double modulation methods used in power electronics and communication, a double modulation strategy for both power and data is presented and applied in dc-dc power converters to achieve what we call 'talkative power'. A modulation strategy called frequency hopping-differential phase shift keying (FH-DPSK) is also presented to overcome the crosstalk between chosen transmission systems. The proposed talkative power strategy sheds new light on and provides inspiration for the further development of power electronics and communication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235034PMC
http://dx.doi.org/10.1038/s41467-020-16262-0DOI Listing

Publication Analysis

Top Keywords

power electronics
20
electronics communication
12
power
11
talkative power
8
dc-dc power
8
power converters
8
double modulation
8
modulation strategy
8
electronics
6
communication
5

Similar Publications

Precise Measurement of the e^{+}e^{-}→D_{s}^{+}D_{s}^{-} Cross Section at Center-of-Mass Energies from Threshold to 4.95 GeV.

Phys Rev Lett

December 2024

State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of China.

Using the e^{+}e^{-} collision data collected with the BESIII detector operating at the BEPCII collider, at center-of-mass energies from the threshold to 4.95 GeV, we present precise measurements of the cross section for the process e^{+}e^{-}→D_{s}^{+}D_{s}^{-} using a single-tag method. The resulting cross section line shape exhibits several new structures, thereby offering an input for a future coupled-channel analysis and model tests, which are critical to understand vector charmonium-like states with masses between 4 and 5 GeV.

View Article and Find Full Text PDF

The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.

View Article and Find Full Text PDF

Since hydrogen is a promising alternative to fossil fuels due to its high energy density and environmental friendliness, water electrolysis for hydrogen production has received widespread attentions wherein the development of active and stable catalytic materials is a key research direction. This article designs a dual transition metal doped functional graphene for hydrogen evolution reaction via density functional theory calculations. Among varied combinations, 16 candidates are screened out that are expected to be stable as reflected by the criterion of formation energy Ef < 0 and active due to its free energy of hydrogen adsorption ∆GH within the window of ±0.

View Article and Find Full Text PDF

Transient Triplet Metallopnictinidenes M-Pn (M = Pd, Pt; Pn = P, As, Sb): Characterization and Dimerization.

J Am Chem Soc

January 2025

Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstr 4, 37077 Göttingen, Germany.

Nitrenes (R-N) have been subject to a large body of experimental and theoretical studies. The fundamental reactivity of this important class of transient intermediates has been attributed to their electronic structures, particularly the accessibility of triplet vs singlet states. In contrast, electronic structure trends along the heavier pnictinidene analogues (R-Pn; Pn = P-Bi) are much less systematically explored.

View Article and Find Full Text PDF

Soft Artificial Synapse Electronics.

Research (Wash D C)

January 2025

Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.

Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!