Histone H2A variants alpha1-extension helix directs RNF168-mediated ubiquitination.

Nat Commun

Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.

Published: May 2020

AI Article Synopsis

Article Abstract

Histone ubiquitination plays an important role in the DNA damage response (DDR) pathway. RNF168 catalyzes H2A and H2AX ubiquitination on lysine 13/15 (K13/K15) upon DNA damage and promotes the accrual of downstream repair factors at damaged chromatin. Here, we report that RNF168 ubiquitinates the non-canonical H2A variants H2AZ and macroH2A1/2 at the divergent N-terminal tail lysine residue. In addition to their evolutionarily conserved nucleosome acidic patch, we identify the positively charged alpha1-extension helix as essential for RNF168-mediated ubiquitination of H2A variants. Moreover, mutation of the RNF168 UMI (UIM- and MIU-related UBD) hydrophilic acidic residues abolishes RNF168-mediated ubiquitination as well as 53BP1 and BRCA1 ionizing radiation-induced foci formation. Our results reveal a juxtaposed bipartite electrostatic interaction utilized by the nucleosome to direct RNF168 orientation towards the target lysine residues in proximity to the H2A alpha1-extension helix, which plays an important role in the DDR pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235047PMC
http://dx.doi.org/10.1038/s41467-020-16307-4DOI Listing

Publication Analysis

Top Keywords

h2a variants
12
alpha1-extension helix
12
rnf168-mediated ubiquitination
12
plays role
8
dna damage
8
ddr pathway
8
ubiquitination
5
histone h2a
4
variants alpha1-extension
4
helix directs
4

Similar Publications

Characterizing the regulatory effects of H2A.Z and SWR1-C on gene expression during hydroxyurea exposure in Saccharomyces cerevisiae.

PLoS Genet

January 2025

Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada.

Chromatin structure and DNA accessibility are partly modulated by the incorporation of histone variants. H2A.Z, encoded by the non-essential HTZ1 gene in S.

View Article and Find Full Text PDF

Non-nucleosomal (CENP-A/H4) - DNA complexes as a possible platform for centromere organization.

bioRxiv

January 2025

Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo 0318, Norway.

The centromere is a part of the chromosome that is essential for the even segregation of duplicated chromosomes during cell division. It is epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A associates specifically with a group of 16 proteins that form the centromere-associated network of proteins (CCAN).

View Article and Find Full Text PDF

The "Ins and Outs and What-Abouts" of H2A.Z: A Tribute to C. David Allis.

J Biol Chem

January 2025

Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, 35390 Giessen, Germany. Electronic address:

In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.

View Article and Find Full Text PDF

The chromatin remodeling factor OsINO80 promotes H3K27me3 and H3K9me2 deposition and maintains TE silencing in rice.

Nat Commun

December 2024

State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China.

The INO80 chromatin remodeling complex plays a critical role in shaping the dynamic chromatin environment. The diverse functions of the evolutionarily conserved INO80 complex have been widely reported. However, the role of INO80 in modulating the histone variant H2A.

View Article and Find Full Text PDF

Surface engineering of amine transaminases to control their region-selective immobilization.

Int J Biol Macromol

December 2024

Center for cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain. Electronic address:

The industrial use of enzymes often requires their immobilization to facilitate downstream processing and enable reuse. However, controlling enzyme orientation during immobilization is challenging and typically restricted to the N- and C-terminal regions. In this work, we propose a strategy to immobilize more active and stable amine transaminases (ATAs) by combining protein engineering with immobilization techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!