Background: Acute myeloid leukemia (AML) is a heterogenic lethal disorder characterized by the accumulation of abnormal myeloid progenitor cells in the bone marrow which results in hematopoietic failure. Despite various efforts in detection and treatment, many patients with AML die of this cancer. That is why it is important to develop novel therapeutic options, employing strategic target genes involved in apoptosis and tumor progression.

Methods: The aim of the study was to evaluate PARP1, PARP2, PARP3, and TRPM2 gene expression at mRNA level using qPCR method in the cells of hematopoietic system of the bone marrow in patients with acute myeloid leukemia, bone marrow collected from healthy patients, peripheral blood of healthy individuals, and hematopoietic stem cells from the peripheral blood after mobilization.

Results: The results found that the bone marrow cells of the patients with acute myeloid leukemia (AML) show overexpression of PARP1 and PARP2 genes and decreased TRPM2 gene expression. In the hematopoietic stem cells derived from the normal marrow and peripheral blood after mobilization, the opposite situation was observed, i.e. TRPM2 gene showed increased expression while PARP1 and PARP2 gene expression was reduced. We observed positive correlations between PARP1, PARP2, PARP3, and TRPM2 genes expression in the group of mature mononuclear cells derived from the peripheral blood and in the group of bone marrow-derived cells. In AML cells significant correlations were not observed between the expression of the examined genes. In addition, we observed that the reduced expression of TRPM2 and overexpression of PARP1 are associated with a shorter overall survival of patients, indicating the prognostic significance of these genes expression in AML.

Conclusions: Our research suggests that in physiological conditions in the cells of the hematopoietic system there is mutual positive regulation of PARP1, PARP2, PARP3, and TRPM2 genes expression. PARP1, PARP2, and TRPM2 genes at mRNA level deregulate in acute myeloid leukemia cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236215PMC
http://dx.doi.org/10.1186/s12885-020-06903-4DOI Listing

Publication Analysis

Top Keywords

parp1 parp2
28
acute myeloid
20
myeloid leukemia
20
parp2 parp3
16
parp3 trpm2
16
trpm2 genes
16
genes expression
16
bone marrow
16
peripheral blood
16
trpm2 gene
12

Similar Publications

Design, Synthesis, and Pharmacodynamic Evaluation of Highly Selective PARP1 Inhibitors with Brain Penetrance.

J Med Chem

January 2025

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.

Selective poly(ADP-ribose) polymerase 1 (PARP1) inhibitors not only exhibit antitumor efficacy but also offer the potential to mitigate the toxicities typically associated with broader PARP inhibition. In this study, we designed and synthesized a series of small molecules targeting highly selective PARP1 inhibitors. Among these, demonstrated excellent selectivity to PARP1 along with the capability to effectively cross the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Metastatic prostate cancer remains incurable. Though significant progress has been made in the field, the search for agents that improve outcomes for patients is ongoing. Several clinical trials have explored the benefit of combining PARP inhibitors (PARPi) with androgen receptor pathway inhibitors (ARPIs) for metastatic castrate resistant prostate cancer (mCRPC), especially those cancers with alterations in homologous recombination repair (HRR) genes.

View Article and Find Full Text PDF

Novel inhibitors of PARP1 and PARP14: design, synthesis, and potentiation of cisplatin efficacy in cancer.

Future Med Chem

January 2025

Medicinal Chemistry Group, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia.

Background: Poly(ADP-ribose) polymerase (PARP) is a superfamily of enzymes involved in cell survival. Both PARP1 and PARP14 are overexpressed in malignancies. No clinically approved PARP14 inhibitors are available, and PARP1 inhibitors are generally nonspecific, resulting in a need for a more diverse library of selective PARP1 and PARP14 inhibitors.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most prevalent and deadly forms of cancer. It is universally treated with a combination of the DNA damaging chemotherapy drugs irinotecan, 5-Fluorouracil (5-FU), and oxaliplatin. is a novel oncogene that plays critical roles in chromatin remodeling and DNA damage repair, as well as the regulation of malignant gene expression.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2) play a key role in DNA repair. As major sensors of DNA damage, they are activated to produce poly(ADP-ribose). PARP1/PARP2 inhibitors have emerged as effective drugs for the treatment of cancers with BRCA deficiencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!