Real Time Monitoring of Calcium Oxalate Precipitation Reaction by Using Corrosion Resistant Magnetoelastic Resonance Sensors.

Sensors (Basel)

Departament de Electricidad y Electrónica, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.

Published: May 2020

AI Article Synopsis

  • The study introduces a novel approach to monitor calcium oxalate crystal precipitation in real-time using a magnetoelastic resonator made from a robust amorphous ferromagnetic alloy, improving upon previous methods that utilized the Metglas 2826 alloy.
  • The new resonator boasts enhanced corrosion resistance for biological environments and allows for rapid and precise measurement of resonance frequency shifts, resulting in improved signal resolution and reduced noise.
  • The experiment demonstrates the sensor's capability to detect precipitated mass changes over time for varying concentrations of oxalic acid and calcium chloride, confirming its effectiveness in monitoring precipitation reactions.

Article Abstract

The magnetoelastic resonance is used to monitor the precipitation reaction of calcium oxalate () crystals in real-time, by measuring the shift of the resonance frequency caused by the mass increase on the resonator. With respect to previous work on the same matter, the novelty lies in the adoption of an amorphous ferromagnetic alloy, of composition , as resonator, that replaces the commercial Metglas 2826 alloy (composition ). The enhanced corrosion resistance of this material allows it to be used in biological environments without any pre-treatment of its surface. Additionally, the measurement method, which has been specifically adapted to this application, allows quick registration of the whole resonance curve as a function of the excitation frequency, and thus enhances the resolution and decreases the detection noise. The frequency shift is calibrated by the static deposition of well-known masses of . The resonator dimensions have been selected to improve sensitivity. A 20 mm long, 2 mm wide and 25 m thick magnetoelastic resonator has been used to monitor the precipitation reaction of calcium oxalate in a 500 s time interval. The results of the detected precipitated mass when oxalic acid and calcium chloride are mixed in different concentrations (30 mM, 50 mM and 100 mM) are presented as a function of time. The results show that the sensor is capable of monitoring the precipitation reaction. The mass sensitivity obtained, and the corrosion resistance of the material, suggest that this material can perform excellently in monitoring this type of reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284584PMC
http://dx.doi.org/10.3390/s20102802DOI Listing

Publication Analysis

Top Keywords

precipitation reaction
16
calcium oxalate
12
magnetoelastic resonance
8
monitor precipitation
8
reaction calcium
8
alloy composition
8
corrosion resistance
8
resistance material
8
reaction
5
real time
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!