Bacteria living on surfaces use different types of motility mechanisms to move on the surface in search of food or to form microcolonies. Twitching is one such form of motility employed by bacteria such as Neisseria gonorrhoeae, in which the polymeric extensions known as type IV pili mediate its movement. Pili extending from the cell body adhere to the surface and pull the bacteria by retraction. The bacterial movement is decided by the two-dimensional tug-of-war among the pili attached to the surface. Natural surfaces on which these microcrawlers dwell are generally spatially inhomogeneous and have varying surface properties. Their motility is known to be affected by the topography of the surfaces. Therefore, it is possible to control bacterial movement by designing structured surfaces which can be potentially utilized for controlling biofilm architecture. In this paper, we numerically investigate the twitching motility in a two-dimensional corrugated channel. The bacterial movement is simulated by two different models: (a) a detailed tug-of-war model which extensively describe the twitching motility of bacteria assisted by pili and (b) a coarse-grained run-and-tumble model which depicts the motion of wide-ranging self-propelled particles. The simulation of bacterial motion through asymmetric corrugated channels using the above models show rectification. The bacterial transport depends on the geometric parameters of the channel and inherent system parameters such as persistence length and self-propelled velocity. In particular, the variation of the particle current with the geometric parameters of the microchannels shows that one can optimize the particle current for specific values of these parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.101.042409 | DOI Listing |
PLoS One
January 2025
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.
Through their expansive mycelium network, soil fungi alter the physical arrangement and chemical composition of their local environment. This can significantly impact bacterial distribution and nutrient transport and can play a dramatic role in shaping the rhizosphere around a developing plant. However, direct observation and quantitation of such behaviors is extremely difficult due to the opacity and complex porosity of the soil microenvironment.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 Route de Narbonne, Toulouse, 31400, France.
Nat Commun
January 2025
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
In the spore-forming bacterium Bacillus subtilis transcription and translation are uncoupled and the translational machinery is located at the cell poles. During sporulation, the cell undergoes morphological changes including asymmetric division and chromosome translocation into the forespore. However, the fate of translational machinery during sporulation has not been described.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic. Electronic address:
Public transport represents a potential site for the transmission of resistant pathogens due to the rapid movement of large numbers of people. This study aimed to investigate the bacterial contamination of frequently touched surfaces in the public transport system operating in the proximity of the biggest Czech hospital during the coronavirus pandemic despite extensive cleaning and disinfection efforts. In June and September 2020, samples from the metro trains, ground transport and stationary objects were collected, enriched and cultured.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
Diabetic wounds are notoriously difficult to heal due to impaired cell repair mechanisms, reduced angiogenesis, and a heightened risk of infection. Fibroblasts play a vital role in wound healing by producing extracellular matrix (ECM) components and various growth factors, but their function is inhibited in diabetic wounds. Chitooligosaccharides (COS), intermediate products of chitosan degradation, have shown efficacy in promoting tissue repair, yet their role in diabetic wound healing remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!