We use a continuous mesoscopic model to address the yielding properties of plastic composites, formed by a host material and inclusions with different elastic and/or plastic properties. We investigate the flow properties of the composed material under a uniform externally applied deviatoric stress. We show that due to the heterogeneities induced by the inclusions, a scalar modeling in terms of a single deviatoric strain of the same symmetry as the externally applied deformation gives inaccurate results. A realistic modeling must include all possible shear deformations. Implementing this model in a two-dimensional system, we show that the effect of harder inclusions is very weak to relatively high concentrations. For softer inclusions instead, the effect is much stronger; even a small concentration of inclusions affecting the form of the flow curve and the critical stress. We also present the details of a full three-dimensional simulation scheme and obtain the corresponding results for harder and softer inclusions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.101.043004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!