Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The recent years have witnessed a rapid increase in the number of scientific articles in biomedical domain. These literature are mostly available and readily accessible in electronic format. The domain knowledge hidden in them is critical for biomedical research and applications, which makes biomedical literature mining (BLM) techniques highly demanding. Numerous efforts have been made on this topic from both biomedical informatics (BMI) and computer science (CS) communities. The BMI community focuses more on the concrete application problems and thus prefer more interpretable and descriptive methods, while the CS community chases more on superior performance and generalization ability, thus more sophisticated and universal models are developed. The goal of this paper is to provide a review of the recent advances in BLM from both communities and inspire new research directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138828 | PMC |
http://dx.doi.org/10.1093/bib/bbaa057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!