Developing embryos can adapt dynamically to noise and variation to generate organs of incredible precision, a process termed 'canalization'; however, the underlying robustness mechanisms are poorly understood. Technological developments, both in quantitative imaging and high precision perturbation, are now enabling targeted investigation into developmental robustness in vivo. Here, we will first distil the common design features of studies that have exploited the canalization behaviour of specific systems to interrogate developmental adaptation, to provide a general experimental framework for future investigations in other contexts. We will then highlight, using a selection of recent case studies, how this approach is revealing that tissues and embryos can fix themselves in unexpected ways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gde.2020.04.001 | DOI Listing |
NPJ Digit Med
January 2025
Technology & Innovation Hub, Shirley Ryan AbilityLab, Chicago, IL, USA.
Early screening and evaluation of infant motor development are crucial for detecting motor deficits and enabling timely interventions. Traditional clinical assessments are often subjective, without fully capturing infants' "real-world" behavior. This has sparked interest in portable, low-cost technologies to objectively and precisely measure infant motion at home, with a goal of enhancing ecological validity.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Odor perception plays a critical role in early human development, but the underlying neural mechanisms are not fully understood. To investigate these, we presented appetitive and aversive odors to infants of both sexes at one month of age while recording functional magnetic resonance imaging (fMRI) and nasal airflow data. Infants slept during odor presentation to allow MRI scanning.
View Article and Find Full Text PDFCurr Top Dev Biol
January 2025
Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States. Electronic address:
All-trans retinoic acid (ATRA) signaling is a major pathway regulating numerous differentiation, proliferation, and patterning processes throughout life. ATRA biosynthesis depends on the nutritional availability of vitamin A and other retinoids and carotenoids, while it is sensitive to dietary and environmental toxicants. This nutritional and environmental influence requires a robustness response that constantly fine-tunes the ATRA metabolism to maintain a context-specific, physiological range of signaling levels.
View Article and Find Full Text PDFDiscov Oncol
January 2025
West China School of Medicine, Sichuan University, Chengdu, China.
Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.
View Article and Find Full Text PDFSensory neurons must be reproducibly specified to permit accurate neural representation of external signals but also able to change during evolution. We studied this paradox in the olfactory system by establishing a single-cell transcriptomic atlas of all developing antennal sensory lineages, including latent neural populations that normally undergo programmed cell death (PCD). This atlas reveals that transcriptional control is robust, but imperfect, in defining selective sensory receptor expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!