Minodronate is a heterocyclic nitrogen-containing bisphosphonate with high potency in inhibiting bone resorption, and is developed for clinical use in Japan. Minodronate has very high potency in inhibiting farnesyl pyrophosphate synthase, and shows lower affinity for bone matrix hydroxyapatite at both neutral and acidic pH. As a result, small amount of minodronate is deposited in bone but can exert strong anti-resorptive activity in vivo. In this review on minodronate, we summarize the mechanism of action, physico-chemical properties, effects on bone quality in animals, and effects on bone turnover, bone mineral density and fracture prevention, as well as safety in the treatment of patients with osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2020.115432 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Department of Physics, Govt. Polytechnic College, Nagercoil, 629004, India.
New methodologies have been evaluated for validating analytical characterization with artificial neural networks (ANNs). Compared to previous machine learning models, these provide more accurate and automated results with high testing accuracy. The Schiff base ruthenium complexes used in the proposed study were synthesized using 4-aminoantipyrine derivatives.
View Article and Find Full Text PDFJ Med Chem
January 2025
Consejo Superior de Investigaciones Científicas (IQM-CSIC), Instituto de Química Médica, 28006 Madrid, Spain.
Parkinson's disease (PD), the second most common neurodegenerative disorder, affects around 10 million people worldwide. It is a multifactorial disease marked by dopaminergic neuron loss with oxidative stress (OS) and neuroinflammation as key pathological drivers. Current treatments focus on dopamine replacement and are symptomatic, underscoring the urgent need for disease-modifying therapies.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China. Electronic address:
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma in adults, which characterized by a high degree of heterogeneity in terms of clinical presentation, molecular phenotype, and genetic features. However, approximately 30 %-40 % of patients are refractory to standard chemotherapy, and their prognosis is poor. The emergence of small-molecule inhibitors, such as Bruton's tyrosine kinase inhibitors (BTKi), has greatly improved the treatment of DLBCL; however, drug resistance associated with small-molecule inhibitors has greatly limited their clinical application.
View Article and Find Full Text PDFBiotechnol J
January 2025
School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
Adeno-associated virus (AAV) is a versatile viral vector technology that can be engineered for specific functionality in vaccine and gene therapy applications. One of the major challenges in AAV production is the need for a GMP-ready platform-based approach to downstream processing, as this would lead to a standardized method for multiple products. Chromatography has huge potential in AAV purification, as it is a scalable method that would enable manufacturing to a high degree of purity, potency, and consistency.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53715, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53715, USA. Electronic address:
Natural killer (NK) cells are an appealing off-the-shelf, allogeneic cellular therapy due to their cytotoxic profile. However, their activity against solid tumors remains suboptimal in part due to the upregulation of NK-inhibitory ligands, such as HLA-E, within the tumor microenvironment. Here, we utilize CRISPR-Cas9 to disrupt the KLRC1 gene (encoding the HLA-E-binding NKG2A receptor) and perform non-viral insertion of a GD2-targeting chimeric antigen receptor (CAR) within NK cells isolated from human peripheral blood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!