Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Weak binding of hydrogen atoms to the 2H-MoS basal plane renders MoS inert as an electrocatalyst for the hydrogen evolution reaction. Transition-metal doping can activate neighboring sulfur atoms in the MoS basal plane to bind hydrogen more strongly. Our theoretical studies show strong variation in the degree of activation by dopants across the 3d transition-metal series. To understand the trends in activation, we propose a model based on the electronic promotion energy required to partially open the full valence shell of a local S atom and therefore enable it to bond with a H atom. In general, the promotion is achieved through an electron transfer from the S to neighboring metal-atom sites. Furthermore, we demonstrate a specific, electronic-structure-based descriptor for the hydrogen-binding strength: Δ , the local interband energy separation between the lowest empty d-states on the dopant metal atoms and occupied p-states on S. This model can be used to provide guidelines for chalcogen activation in future catalyst design based on doped transition-metal dichalcogenides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202003091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!