Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are often uncomputable, or lack practical implementations. In this paper we attempt to follow a big picture view while also providing a particular theory and its implementation to present a novel, purposely simple, and interpretable hierarchical architecture. This architecture incorporates the unsupervised learning of a model of the environment, learning the influence of one's own actions, model-based reinforcement learning, hierarchical planning, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations which are increasingly more abstract, but can retain details when needed. We demonstrate the universality of the architecture by testing it on a series of diverse environments ranging from audio/visual compression to discrete and continuous action spaces, to learning disentangled representations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233548PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230432PLOS

Publication Analysis

Top Keywords

unsupervised learning
8
learning
5
toyarchitecture unsupervised
4
learning interpretable
4
interpretable models
4
models environment
4
environment artificial
4
artificial intelligence
4
intelligence focused
4
focused extremes
4

Similar Publications

Biological vision systems simultaneously learn to efficiently encode their visual inputs and to control the movements of their eyes based on the visual input they sample. This autonomous joint learning of visual representations and actions has previously been modeled in the Active Efficient Coding (AEC) framework and implemented using traditional frame-based cameras. However, modern event-based cameras are inspired by the retina and offer advantages in terms of acquisition rate, dynamic range, and power consumption.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI) has already revolutionized the analysis of image, text, and tabular data, bringing significant advances across many medical sectors. Now, by combining with wearable inertial measurement units (IMUs), AI could transform health care again by opening new opportunities in patient care and medical research.

Objective: This systematic review aims to evaluate the integration of AI models with wearable IMUs in health care, identifying current applications, challenges, and future opportunities.

View Article and Find Full Text PDF

This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.

View Article and Find Full Text PDF

Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules.

View Article and Find Full Text PDF

Recent advancements in atomic force microscopy (AFM) have enabled detailed exploration of materials at the molecular and atomic levels. These developments, however, pose a challenge: the data generated by microscopic and spectroscopic experiments are increasing rapidly in both size and complexity. Extracting meaningful physical insights from these datasets is challenging, particularly for multilayer heterogeneous nanoscale structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!