Anti-HIV-Active Nucleoside Triphosphate Prodrugs.

J Med Chem

Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany.

Published: June 2020

We disclose a study on nucleoside triphosphate (NTP) analogues in which the γ-phosphate is covalently modified by two different biodegradable masking units and d4T as nucleoside analogue that enable the delivery of d4TTP with high selectivity in phosphate buffer (pH 7.3) and by enzyme-triggered reactions in human CD4 T-lymphocyte CEM cell extracts. This allows the bypass of all steps normally needed in the intracellular phosphorylation. These Triro-nucleotides comprising an acyloxybenzyl (AB; ester) or an alkoxycarbonyloxybenzyl (ACB; carbonate) in combination with an ACB moiety are described as NTP delivery systems. The introduction of these two different groups led to the selective formation of γ-(ACB)-d4TTPs by chemical hydrolysis and in particular by cell extract enzymes. γ-(AB)-d4TTPs are faster cleaved than γ-(ACB)-d4TTPs. In antiviral assays, the compounds are highly active against HIV-1 and HIV-2 in wild-type CEM/O cells and more importantly in thymidine kinase-deficient CD4 T-cells (CEM/TK).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.0c00271DOI Listing

Publication Analysis

Top Keywords

nucleoside triphosphate
8
anti-hiv-active nucleoside
4
triphosphate prodrugs
4
prodrugs disclose
4
disclose study
4
study nucleoside
4
triphosphate ntp
4
ntp analogues
4
analogues γ-phosphate
4
γ-phosphate covalently
4

Similar Publications

Background: Neuroinflammation plays a critical role in Alzheimer's disease pathogenesis. Neurons are anatomically divided in subcellular compartments (axons, soma, and synapses), which may be distinctly impacted by neuroinflammation. This study aims to examine cellular compartment-specific proteomic signatures in excitatory neurons following a systemic neuroinflammatory stress.

View Article and Find Full Text PDF

The bacterium Bacillus subtilis undergoes asymmetric cell division during sporulation, producing a mother cell and a smaller forespore connected by the SpoIIQ-SpoIIIA (or Q-A) channel. The two cells differentiate metabolically, and the forespore becomes dependent on the mother cell for essential building blocks. Here, we investigate the metabolic interactions between mother cell and forespore using genome-scale metabolic and expression models as well as experiments.

View Article and Find Full Text PDF

Current temporal studies of DNA replication are either low-resolution or require complex cell synchronisation and/or sorting procedures. Here we introduce Nanotiming, a single-molecule, nanopore sequencing-based method producing high-resolution, telomere-to-telomere replication timing (RT) profiles of eukaryotic genomes by interrogating changes in intracellular dTTP concentration during S phase through competition with its analogue bromodeoxyuridine triphosphate (BrdUTP) for incorporation into replicating DNA. This solely demands the labelling of asynchronously growing cells with an innocuous dose of BrdU during one doubling time followed by BrdU quantification along nanopore reads.

View Article and Find Full Text PDF

Biochemical characterization and inhibitor potential of African swine fever virus thymidine kinase.

Int J Biol Macromol

December 2024

Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand. Electronic address:

African Swine Fever (ASF) is a highly contagious disease affecting both domestic pigs and wild boars. In domestic pigs, ASF is a rapidly-progressing disease with a mortality rate reaching 100 %, causing tremendous economic loss in affected areas. ASFV is caused by African Swine Fever Virus (ASFV), which is a large, enveloped double-stranded DNA virus belonging to the Asfarviridae family.

View Article and Find Full Text PDF

Hypomethylating agents (HMAs) such as azacytidine and decitabine are FDA-approved chemotherapy drugs for hematologic malignancy. By inhibiting DNA methyltransferases, HMAs reactivate tumor suppressor genes (TSGs) and endogenous double-stranded RNAs (dsRNAs) that limit tumor growth and trigger apoptosis via viral mimicry. Yet, HMAs show limited effects in many solid tumors despite the strong induction of TSGs and dsRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!