nematodes are able to tolerate desiccation by entering into a peculiar state of suspended animation known as anhydrobiosis. When desiccated, anhydrobiotic organisms are also able to tolerate other physical stresses, as high and low levels of temperature and pressure. Here, we decided to investigate the tolerance of desiccated to an unprecedented double stress - hypoxia within 99.99% Gallium (Ga) metal cage. The authors observed that regardless of the external relative humidity, desiccated tolerated 7 d confined within the metal cage, displaying no negative effects on its survival and population growth rates over 40 d. The results evidence that anhydrobiosis also renders nematodes tolerant to otherwise lethal concentrations of Ga, in an oxygen-poor environment; thus, expanding its polyextremotolerance profile. nematodes are able to tolerate desiccation by entering into a peculiar state of suspended animation known as anhydrobiosis. When desiccated, anhydrobiotic organisms are also able to tolerate other physical stresses, as high and low levels of temperature and pressure. Here, we decided to investigate the tolerance of desiccated to an unprecedented double stress – hypoxia within 99.99% Gallium (Ga) metal cage. The authors observed that regardless of the external relative humidity, desiccated tolerated 7 d confined within the metal cage, displaying no negative effects on its survival and population growth rates over 40 d. The results evidence that anhydrobiosis also renders nematodes tolerant to otherwise lethal concentrations of Ga, in an oxygen-poor environment; thus, expanding its polyextremotolerance profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266057PMC
http://dx.doi.org/10.21307/jofnem-2020-046DOI Listing

Publication Analysis

Top Keywords

metal cage
20
gallium metal
12
nematodes tolerate
8
tolerate desiccation
8
desiccation entering
8
entering peculiar
8
peculiar state
8
state suspended
8
suspended animation
8
animation anhydrobiosis
8

Similar Publications

Modular access to saturated bioisosteres of anilines via photoelectrochemical decarboxylative C(sp)-N coupling.

Nat Commun

January 2025

Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.

In drug development, the substitution of benzene rings in aniline-based drug candidates with saturated bridged bicyclic ring systems often enhances pharmacokinetic properties while preserving biological activity. However, current efforts predominantly focuses on bicyclo[1.1.

View Article and Find Full Text PDF

Metal-organic cages improving microporosity in polymeric membrane for superior CO capture.

Sci Adv

January 2025

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.

Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO and N or CH. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1).

View Article and Find Full Text PDF

Desmoid fibromatosis (DF) is a rare low-grade benign myofibroblastic neoplasm that originates from fascia and muscle striae. For giant chest wall DF, surgical resection offer a radical form of treatment and the causing defects usually need repair and reconstruction, which can restore the structural integrity and rigidity of the thoracic cage. The past decade witnessed rapid advances in the application of various prosthetic material in thoracic surgery.

View Article and Find Full Text PDF

As our planet faces increasing environmental challenges, such as biotic pressures, abiotic stressors, and climate change, it is crucial to understand the complex mechanisms that underlie stress responses in crop plants. Over past few years, the integration of techniques of proteomics, transcriptomics, and genomics like LC-MS, IT-MS, MALDI-MS, DIGE, ESTs, SAGE, WGS, GWAS, GBS, 2D-PAGE, CRISPR-Cas, cDNA-AFLP, HLS, HRPF, MPSS, CAGE, MAS, IEF, MudPIT, SRM/MRM, SWATH-MS, ESI have significantly enhanced our ability to comprehend the molecular pathways and regulatory networks, involved in balancing the ecosystem/ecology stress adaptation. This review offers thorough synopsis of the current research on utilizing these multi-omics methods (including metabolomics, ionomics) for battling abiotic (salinity, temperature (chilling/freezing/cold/heat), flood (hypoxia), drought, heavy metals/loids), biotic (pathogens like fungi, bacteria, virus, pests, and insects (aphids, caterpillars, moths, mites, nematodes) and climate change stress (ozone, ultraviolet radiation, green house gases, carbon dioxide).

View Article and Find Full Text PDF

Anion-π Interactions on Functionalized Porous Aromatic Cages for Gold Recovery from Complex Aqueous with High Capacity.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Chemistry, Renmin Street, 130024, Changchun, CHINA.

High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!