Ternary I-III-VI2 semiconductors usually have narrow band gaps and large absorption coefficients arising from the unique characteristics of their outer-d valence electrons, which are intimately connected with the photothermal conversion properties. AgFeS2 is known as one such material that has the potential to absorb near-infrared light. In this work, we utilized density functional theory (DFT) calculations to evaluate the electronic structure and optical absorption properties of AgFeS2. Strong absorptions were predicted over a wide Vis-NIR region due to the localized 3d electron of Fe atoms, which agree quite well with the UV-Vis-NIR spectra measured by experiment. The as-prepared AgFeS2 nanoparticles were then modified with mPEG-DSPE, an efficient photothermal agent for artery stenosis therapy. Its photothermal conversion effect has been systematically studied, indicating the potential for causing the hyperthermia of macrophages, an essential part of the artery inflammation response. More importantly, both in vitro cell experiments and in vivo mouse-model studies show that the induction of hyperthermia in artery stenosis by using AgFeS2 nanoparticles is safe and effective when injected at a very low concentration. This study provides a novel photothermal platform derived from the inheritability of bandgap structure and also promotes the process of artery inflammation and stenosis therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr01587c | DOI Listing |
J Magn Reson Imaging
January 2025
Department of Neurology, Mayo Clinic at Rochester, Rochester, Minnesota, USA.
Radiologie (Heidelb)
January 2025
Klinik für diagnostische und interventionelle Neuroradiologie, Universitätskliniken des Saarlandes, Kirrberger Str., 66421, Homburg Saar, Deutschland.
Performance: Spontaneous dissections of the cerebral arteries are among the leading causes of stroke in young adults. They result from hemorrhage into the outer layers of the arterial wall, which can lead to stenosis or even complete vessel occlusion. Clinical presentations vary, ranging from localized pain to cerebral ischemic complications.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
Objectives: The use of deep learning models for quantitative measurements on coronary computed tomography angiography (CCTA) may reduce inter-reader variability and increase efficiency in clinical reporting. This study aimed to investigate the diagnostic performance of a recently updated deep learning model (CorEx-2.0) for quantifying coronary stenosis, compared separately with two expert CCTA readers as references.
View Article and Find Full Text PDFCells
January 2025
Division of Nephrology & Hypertension, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
Metabolic syndrome (MetS) is associated with low-grade inflammation, which can be exacerbated by renal artery stenosis (RAS) and renovascular hypertension, potentially worsening outcomes through pro-inflammatory cytokines. This study investigated whether mesenchymal stem/stromal cells (MSCs) could reduce fat inflammation in pigs with MetS and RAS. Twenty-four pigs were divided into Lean (control), MetS, MetS + RAS, and MetS + RAS + MSCs.
View Article and Find Full Text PDFEur Heart J
January 2025
Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Via Aldo Moro 8, 44124 Cona, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!