Calcium phosphate cements are of great interest for researchers and their applications in medical practice expanded. Nevertheless, they have a number of drawbacks including the insufficient level of mechanical properties and low degradation rate. Struvite (MgNHPO) -based cements, which grew in popularity in recent years, despite their neutral pH and acceptable mechanical performance, release undesirable NH ions during their resorption. This issue could be avoided by replacement of ammonia ions in the cement liquid with sodium, however, such cements have a pH values of 9-10, leading to cytotoxicity. Thus, the main goal of this investigation is to optimize the composition of cements to achieve the combination of desirable properties: neutral pH, sufficient mechanical properties, and the absence of cytotoxicity, applying NaHPO-based cement liquid. For this purpose, cement powders precursors in the CaO-MgO-PO system were synthesized by one-pot process in a wide composition range, and their properties were investigated. The optimal performance was observed for the cements with (Ca + Mg)/P ratio of 1.67, which are characterized by newberyite phase formation during setting reaction, pH values close to 7, sufficient compressive strength up to 22 ± 3 MPa (for 20 mol.% of Mg), dense microstructure and adequate matrix properties of the surface. This set of features make those materials promising candidates for medical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217922 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2020.03.011 | DOI Listing |
Bioact Mater
March 2025
College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China.
Bioactive ceramics have been used in bone tissue repair and regeneration. However, because of the complex in vivo osteogenesis process, long cycle, and difficulty of accurately tracking, the mechanism of interaction between materials and cells has yet to be fully understood, hindering its development. The ceramic microbridge microfluidic chip system may solve the problem and provide an in vitro method to simulate the microenvironment in vivo.
View Article and Find Full Text PDFCureus
November 2024
Pulmonary Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, ITA.
Pulmonary alveolar microlithiasis (PAM) is a rare lung disorder characterized by calcium phosphate microliths in the alveolar spaces. Autosomal recessive mutations on the SLC34A2 gene lead to altered type IIb sodium phosphate cotransporter in alveolar type-II cells of the lung, thus resulting in aggregations of microliths in the alveoli. To date, more than 1000 cases have been reviewed by expert pulmonary clinicians.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
Human long bones exhibit pore size gradients with small pores in the exterior cortical bone and large pores in the interior cancellous bone. However, most current bone tissue engineering (BTE) scaffolds only have homogeneous porous structures that do not resemble the graded architectures of natural bones. Pore-size graded (PSG) scaffolds are attractive for BTE since they can provide biomimicking porous structures that may lead to enhanced bone tissue regeneration.
View Article and Find Full Text PDFSurgery
December 2024
The Second Affiliated Hospital of Soochow University, Suzhou, China. Electronic address:
J Fungi (Basel)
December 2024
Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea.
Gene editing using CRISPR/Cas9 is an innovative tool for developing new mushroom strains, offering a promising alternative to traditional breeding methods that are time-consuming and labor-intensive. However, plasmid-based gene editing presents several challenges, including the need for selecting appropriate promoters for Cas9 expression, optimizing codons for the Cas9 gene, the unintended insertion of fragmented plasmid DNA into genomic DNA (gDNA), and regulatory concerns related to genetically modified organisms (GMOs). To address these issues, we utilized a Ribonucleoprotein (RNP) complex consisting of Cas9 and gRNA for gene editing to modify the A mating-type gene of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!