Bone is a hierarchically organized biological material, and its strength is usually attributed to overt factors such as mass, density, and composition. Here we investigate a covert factor - the topological blueprint, or the network organization pattern of trabecular bone. This generally conserved metric of an edge-and-node simplified presentation of trabecular bone relates to the average coordination/valence of nodes and the equiangular 3D offset of trabeculae emanating from these nodes. We compare the topological blueprint of trabecular bone in presumably normal, fractured osteoporotic, and osteoarthritic samples (all from human femoral head, cross-sectional study). We show that bone topology is altered similarly in both fragility fracture and in joint degeneration. Decoupled from the morphological descriptors, the topological blueprint subjected to simulated loading associates with an abnormal distribution of strain, local stress concentrations and lower resistance to the standardized load in pathological samples, in comparison with normal samples. These topological effects show no correlation with classic morphological descriptors of trabecular bone. The negative effect of the altered topological blueprint may, or may not, be partly compensated for by the morphological parameters. Thus, naturally occurring optimization of trabecular topology, or a lack thereof in skeletal disease, might be an additional, previously unaccounted for, contributor to the biomechanical performance of bone, and might be considered as a factor in the life-long pathophysiological trajectory of common bone ailments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218160 | PMC |
http://dx.doi.org/10.1016/j.bonr.2020.100264 | DOI Listing |
Genome Med
January 2025
Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.
Background: Large-scale pharmacogenomic resources, such as the Connectivity Map (CMap), have greatly assisted computational drug discovery. However, despite their widespread use, CMap-based methods have thus far been agnostic to the biological activity of drugs as well as to the genomic effects of drugs in multiple disease contexts. Here, we present a network-based statistical approach, Pathopticon, that uses CMap to build cell type-specific gene-drug perturbation networks and integrates these networks with cheminformatic data and diverse disease phenotypes to prioritize drugs in a cell type-dependent manner.
View Article and Find Full Text PDFCurr Opin Cell Biol
February 2025
School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK. Electronic address:
Whilst DNA encodes our genetic blueprint as individual nucleobases, as well as epigenetic annotations in the form of biochemical marks, it also carries an extra layer of topological information -, the local over or underwinding of the double helix, known as DNA supercoiling. Supercoiling is a fundamental property of DNA that can be viewed as "topological epigenetics": it stores energy and structural information, and is tightly linked to fundamental processes; however, its quantification and study, by experiments and modelling alike, is challenging. We review experimental and simulation techniques to study supercoiling and its partition into twist and writhe, especially in the context of chromatin.
View Article and Find Full Text PDFChem Sci
November 2024
Department of Chemistry, University of Rochester Rochester NY 14627 USA.
RNA provides the genetic blueprint for many pathogenic viruses, including SARS-CoV-2. The propensity of RNA to fold into specific tertiary structures enables the biomolecular recognition of cavities and crevices suited for the binding of drug-like molecules. Despite increasing interest in RNA as a target for chemical biology and therapeutic applications, the development of molecules that recognize RNA with high affinity and specificity represents a significant challenge.
View Article and Find Full Text PDFNeurogenetics
October 2024
Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Av Barcelona 31, Santiago de Compostela A Coruña, 15706, Spain.
The human genome, comprising millions of pairs of bases, serves as the blueprint of life, encoding instructions for cellular processes. However, genomes are not merely linear sequences; rather, the complex of DNA and histones, known as chromatin, exhibits complex organization across various levels, which profoundly influence gene expression and cellular function. Central to understanding genome organization is the emerging field of three-dimensional (3D) genome studies.
View Article and Find Full Text PDFAm J Ind Med
June 2024
DIMACS, Center for Discrete Mathematics & Theoretical Computer Science, Rutgers University, Piscataway, New Jersey, USA.
Excess health and safety risks of commercial drivers are largely determined by, embedded in, or operate as complex, dynamic, and randomly determined systems with interacting parts. Yet, prevailing epidemiology is entrenched in narrow, deterministic, and static exposure-response frameworks along with ensuing inadequate data and limiting methods, thereby perpetuating an incomplete understanding of commercial drivers' health and safety risks. This paper is grounded in our ongoing research that conceptualizes health and safety challenges of working people as multilayered "wholes" of interacting work and nonwork factors, exemplified by complex-systems epistemologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!