Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A mosquito species has its own favourable requirements of abiotic and biotic characteristics including microbiota, in a breeding habitat. Some of the microbiota may cause parasitic or pathogenic effects to mosquito larvae such as species of viruses, parasitic bacteria, fungi, protists, entomopathogenic nematodes, and filamentous fungi. In Sri Lanka, there is a scarcity of information on microbiota associated with mosquito breeding habitats and their effect on mosquito larvae. Hence, the present study was conducted to determine microbiota species/taxa associated with a variety of mosquito breeding habitats in selected areas of the Gampaha District in Sri Lanka and the relationship, if any, the microbiota has with mosquito larva survival and breeding. Forty-five microbiota species belonging to 11 phyla were found from different mosquito breeding habitats with the highest percentage belonging to phylum Euglenozoa (27.89%). Species that belonged to the phylum Amoebozoa (1.22%) and Sarcodina (1.17%) had the lowest abundance, and each of its species richness was recorded as one. followed by comprised 30.8% and 16.59%, respectively, of the total rotifer population. From the total microbiota, 25-50% existed as accidental while less than 25% rare, in the habitat type according to their abundance. Paddy fields had the highest species richness (17), evenness (23.52), Shannon-Weiner (66.64), and beta diversity (0.65) over 50% indicating high heterogeneity in microbiota composition among the habitats. Ciliated protists, namely, , spp., and sp., were identified as naturally occurring microbiota associated with mosquito larvae that inhabited in paddy fields and associated irrigation canals. Only caused a significant lethal effect on mosquito larvae. This study revealed that species of , , , , and served as hosts for where infectivity rate in reached 73.22. sp. selectively served as endoparasitic to larvae causing only 4.58% mortality, and invasive cysts of the pathogen were observed in the subcuticular layer of the host body. Even though spp. were found on larvae, there was no lethal effect due to the attachment of the parasitic agent. The potential of these microbiotas in integrated vector controlling approaches in future perspectives is recommended.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204370 | PMC |
http://dx.doi.org/10.1155/2020/4602084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!