Highly pathogenic (HP) avian influenza viruses (AIV) can spread globally through migratory birds and cause massive outbreaks in commercial poultry. AIV outbreaks have been associated with proximity to waterbodies, presence of waterfowl or wild bird cases near poultry farms. In this study, we compared densities of selected HPAI high-risk wild bird species around 7 locations (H farms) infected with HPAIV H5N8 in the Netherlands in 2016-2017 to densities around 21 non-infected reference farms. Nine reference farms were in low-lying water-rich areas (R-W) and 12 in higher non-water-rich areas (R-NW). Average monthly numbers/km of Eurasian wigeons, tufted ducks, Anatidae (ducks, geese and swans) and Laridae (gulls) were calculated between September and April in rings of 0-1, 1-3, 3-6 and 6-10 km around the farms. Linear mixed model analyses showed generally higher bird densities for H and R-W compared to R-NW farms between October and March. This was most striking for Eurasian wigeons, with in peak month December 105 (95% CI:17-642) and 40 (7-214) times higher densities around H and R-W farms, respectively, compared to R-NW farms. Increased densities around H farms for Eurasian wigeons and Anatidae were more pronounced for distances up to 10 km compared to 0-1 km that mostly consists of the farm yard, which is an unattractive habitat for waterfowl. This distance effect was not observed in gulls, nor in tufted ducks that live on large open waterbodies which are unlikely to be within 0-1 km of farms. This study provides insights into spatio-temporal density dynamics of HPAI high-risk birds around farms and their associations with poultry outbreaks. The outcomes indicate that knowledge of environmental and ecological drivers for wild bird presence and abundance may facilitate identification of priority areas for surveillance and biosecurity measures and decisions on establishments of poultry farms to reduce risk of HPAI outbreaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048466PMC
http://dx.doi.org/10.1111/tbed.13595DOI Listing

Publication Analysis

Top Keywords

wild bird
16
farms
13
poultry farms
12
eurasian wigeons
12
bird densities
8
highly pathogenic
8
pathogenic avian
8
avian influenza
8
farms study
8
hpai high-risk
8

Similar Publications

Purpose: The aim of this study was to investigate the presence of Clinostomum species in wild birds in Turkey using morphological and molecular methods.

Methods: 51 birds of 18 species from seven orders previously reported as definitive hosts of the Clinostomum spp. were collected.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) is a major concern in terms of animal and human health. Between October 2020 and September 2023, there were 36 HPAI outbreaks detected in poultry and other captive birds in Denmark. However, it is often not possible to determine the exact route of introduction.

View Article and Find Full Text PDF

Captivity Reduces Diversity and Shifts Composition of the Great Bustard () Microbiome.

Ecol Evol

January 2025

Hebei Key Laboratory of Wetland Ecology and Conservation Hengshui China.

Captivity offers protection for endangered species, but for bustards, captive individuals face a higher risk of disease and exhibit lower reintroduction success rates. Changes in the diversity of host bacterial and fungal microbiota may be a significant factor influencing reintroduction success. The great bustard () is a globally recognized endangered bird species.

View Article and Find Full Text PDF

Between 21 September and 6 December 2024, 657 highly pathogenic avian influenza (HPAI) A(H5N1) and A(H5N5) virus detections were reported in domestic (341) and wild (316) birds across 27 countries in Europe. Many HPAI outbreaks in domestic birds were clustered in areas with high poultry density and characterised by secondary farm-to-farm spread. Waterfowl, particularly the mute swan, were primarily affected during this reporting period, with HPAI virus detections focused on south-eastern Europe.

View Article and Find Full Text PDF

Bats play key roles in ecosystem functions and provide services to human populations. There is a need to protect bat populations and to mitigate the risks associated with pathogen spillover. Caves are key habitats for many bat species, which use them as roosting and breeding sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!