Delayed Frost Growth on Nanoporous Microstructured Surfaces Utilizing Jumping and Sweeping Condensates.

Langmuir

Department of Mechanical Industrial and Manufacturing Engineering (MIME), The University of Toledo, 4006 Nitschke Hall, Toledo, Ohio 43606, United States.

Published: June 2020

Self-propelled jumping of condensate droplets (dew) enables their easy and efficient removal from surfaces and is essential for enhancing the condensation heat transfer coefficient and for delaying the frost growth rate on supercooled surfaces. Here, we report the droplet-jumping phenomenon using nanoporous vertically aligned carbon nanotube (VA-CNT) microstructures grown on smooth silicon substrates and coated with poly-(1, 1, 2, 2-perfluorodecylacrylate) (pPFDA). We also report droplet-sweeping phenomenon on horizontally mounted surfaces, concluding that the frost surface coverage area and the frost growth rates observed with the droplet-sweeping phenomenon are much lower than those that are observed with the droplet-jumping phenomenon alone. We also investigate the fundamentals of droplet-jumping and the frost growth phenomena using line-shaped, hollow-cylindrical, and cylindrical microstructures, comparing the frost surface coverage area and the ice-bridging times during condensation-frosting, prolonged condensation-frosting, and direct-frosting. We find that the closely spaced thin line-shaped microstructures and hollow-cylindrical microstructures are optimal for frost coverage reduction because of their ability to exhibit droplet-jumping and droplet-sweeping phenomena. We observe that adding nonuniform roughness on top of the microstructures leads to jumping-associated droplet-sweeping on supercooled surfaces. Here, we report the evaporation of an already frozen droplet because of freezing of a supercooled condensate droplet in its close vicinity, enabling the Cassie-Baxter state frost growth and enhancing defrosting efficiency. Finally, we discuss the dynamic defrosting behavior of the pPFDA-coated VA-CNT microstructures, concluding that the small gaps (spacings) between the microstructures not only enable dewetting transitions of droplets but also promote the Cassie-Baxter state frost formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c00413DOI Listing

Publication Analysis

Top Keywords

frost growth
20
frost
8
supercooled surfaces
8
surfaces report
8
droplet-jumping phenomenon
8
va-cnt microstructures
8
droplet-sweeping phenomenon
8
frost surface
8
surface coverage
8
coverage area
8

Similar Publications

The future climatic niche of interior Douglas-fir (Pseudotsuga menziesii var. glauca [Mirb.] Franco) is expected to have little spatial overlap with its current range due to climate change.

View Article and Find Full Text PDF

Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture.

View Article and Find Full Text PDF

Potato is cultivated all the year round in Pakistan. However, the major crop is the autumn crop which is planted in mid-October and contributes 80-85% of the total production. The abrupt climate change has affected the weather patterns all over the world, resulting in the reduction of the mean air temperature in autumn by almost 1.

View Article and Find Full Text PDF

The Nonsyndromic Ascending Thoracic Aorta in a Population-Based Setting: A 5-Year Prospective Cohort Study.

J Am Coll Cardiol

November 2024

Elite Centre for Individualized Medicine in Arterial Disease, Odense University Hospital, Odense, Denmark; Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Background: Prospective data on the clinical course of the ascending thoracic aorta are lacking.

Objectives: This study sought to estimate growth rates of the ascending aorta and to evaluate occurrences of adverse aortic events (AAEs)-that is, thoracic aortic ruptures, type A aortic dissections, and thoracic aortic-related deaths.

Methods: In this prospective cohort study from the population-based, multicenter, randomized DANCAVAS (Danish Cardiovascular Screening trials) I and II, participants underwent cardiovascular risk assessments including electrocardiogram-gated, noncontrast computed tomography (CT) scans.

View Article and Find Full Text PDF

Ribes janczewskii is a rare and valuable plant known for its resistance to spring frosts, pests, and diseases. It is used in hybridization to develop resistant currant varieties but is on the verge of extinction, listed in Kazakhstan Red Book. This study developed a micropropagation and slow-growth storage protocol for conservation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!