Purpose: This study aimed to determine whether MR-based radiomics of glioblastoma can predict the isocitrate dehydrogenase-1 (IDH1) mutation status and compare predictive performances between manual and fully automatic deep-learning segmentations.
Method: Forty-five glioblastoma patients with pretreatment T2-weighted MRIs were retrospectively evaluated. Manual segmentations of glioblastoma and peri-tumoral edema were trained via a deep neural network (V-Net). An independent external cohort of 137 glioblastoma patients from the Cancer Imaging Archive was also included (test set 1, n = 46; test set 2, n = 91). Test set 1-without known IDH1 status-was used to calculate dice similarity coefficients (DSC) between the two segmentation methods (manual & V-Net). From test set 2, all-relevant radiomic features were selected via a random forest-based wrapper algorithm for IDH1 prediction. Receiver operating characteristics (ROC) curves with areas under the curve (AUC) were plotted as performance metrics for both methods.
Results: Among 136 patients (45 and 91 patients from our institution and test set 2, respectively), 17 patients (11.2 %) had IDH1 mutations. The mean DSC of test set 1 was 0.78 ± 0.14 (range, 0.34-0.94). A subset of 9 all-relevant features (8.4 %, 9/107) was selected. V-Net segmentation of the test set 2 yielded similar performance in predicting IDH1 mutation as compared to manual segmentation (V-Net AUC = 0.86 vs. manual AUC = 0.90). The optimal cut-point threshold of AUC yielded 86.8 % accuracy for manual segmentation and 75.8 % for V-Net segmentation.
Conclusions: V-Net showed robust segmentation capability of glioblastoma on T2-weighted MRI. All-relevant radiomics features from both segmentation methods yielded a similar performance in IDH1 prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2020.109031 | DOI Listing |
Circ Genom Precis Med
January 2025
Department of Medicine, Division of Cardiology (M.P., N.J.P., N.P.S.), Duke University, Durham, NC.
Background: Established risk models may not be applicable to patients at higher cardiovascular risk with a measured Lp(a) (lipoprotein[a]) level, a causal risk factor for atherosclerotic cardiovascular disease.
Methods: This was a model development study. The data source was the Nashville Biosciences Lp(a) data set, which includes clinical data from the Vanderbilt University Health System.
Eur Heart J Digit Health
January 2025
Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
Aims: Aortic stenosis (AS) is a common and progressive disease, which, if left untreated, results in increased morbidity and mortality. Monitoring and follow-up care can be challenging due to significant variability in disease progression. This study aimed to develop machine learning models to predict the risks of disease progression and mortality in patients with mild AS.
View Article and Find Full Text PDFGlob Epidemiol
June 2025
Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Introduction: Opium and cigarette smoking have been identified as significant cancer risk factors. Recently, the International Agency for Research on Cancer (IARC) classified opium as a Group 1 carcinogen in 2020.
Method: Using data from a multicenter case-control study in Iran called IROPICAN, involving 717 cases of bladder cancer and 3477 controls, we assessed the interactions on the causal additive scale between opium use and cigarette smoking and their attributing effects to evaluate public health relevance and test for different mechanistic interaction forms to provide new insights for developing of bladder cancer.
Front Neurol
January 2025
Department of Neurology, The Third People's Hospital of Yibin, Yibin, China.
Objective: To evaluate the clinical utility of improved machine learning models in predicting poor prognosis following endovascular intervention for intracranial aneurysms and to develop a corresponding visualization system.
Methods: A total of 303 patients with intracranial aneurysms treated with endovascular intervention at four hospitals (FuShun County Zigong City People's Hospital, Nanchong Central Hospital, The Third People's Hospital of Yibin, The Sixth People's Hospital of Yibin) from January 2022 to September 2023 were selected. These patients were divided into a good prognosis group ( = 207) and a poor prognosis group ( = 96).
Sci Technol Adv Mater
December 2024
JST-CREST, Saitama, Japan.
In this review, we present a new set of machine learning-based materials research methodologies for polycrystalline materials developed through the Core Research for Evolutionary Science and Technology project of the Japan Science and Technology Agency. We focus on the constituents of polycrystalline materials (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!